{"title":"开发和验证腹部平片肠梗阻深度学习模型。","authors":"Yao Li, Shiqi Zhu, Yu Wang, Bowei Mao, Jielu Zhou, Jinzhou Zhu, Chenqi Gu","doi":"10.1177/03000605241271844","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Artificial intelligence (AI) could help medical practitioners in analyzing radiological images to determine the presence and site of bowel obstruction. This retrospective diagnostic study proposed a series of deep learning (DL) models for diagnosing bowel obstruction on abdominal radiograph.</p><p><strong>Methods: </strong>A total of 2082 upright plain abdominal radiographs were retrospectively collected from four hospitals. The images were labeled as normal, small bowel obstruction and large bowel obstruction by three senior radiologists based on comprehensive examinations and interventions within 48 hours after admission. Gradient-weighted class activation mapping was used to visualize the inferential explanation.</p><p><strong>Results: </strong>In the validation set, the Xception-backboned model achieved the highest accuracy (0.863), surpassing the VGG16 (0.847) and ResNet models (0.836). In the test set, the Xception model (accuracy: 0.807) outperformed other models and a junior radiologist (0.780) but not a senior radiologist (0.840). In the AI-aided diagnostic framework, the junior and senior radiologists made their judgements while aware of the Xception model predictions. Their accuracy significantly improved to 0.887 and 0.913, respectively.</p><p><strong>Conclusions: </strong>We developed and validated DL-based computer vision models for diagnosing bowel obstruction on plain abdominal radiograph. DL-based computer-aided diagnostic systems could reduce medical practitioners' workloads and improve diagnostic accuracy.</p>","PeriodicalId":16129,"journal":{"name":"Journal of International Medical Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439178/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and validation of deep learning models for bowel obstruction on plain abdominal radiograph.\",\"authors\":\"Yao Li, Shiqi Zhu, Yu Wang, Bowei Mao, Jielu Zhou, Jinzhou Zhu, Chenqi Gu\",\"doi\":\"10.1177/03000605241271844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Artificial intelligence (AI) could help medical practitioners in analyzing radiological images to determine the presence and site of bowel obstruction. This retrospective diagnostic study proposed a series of deep learning (DL) models for diagnosing bowel obstruction on abdominal radiograph.</p><p><strong>Methods: </strong>A total of 2082 upright plain abdominal radiographs were retrospectively collected from four hospitals. The images were labeled as normal, small bowel obstruction and large bowel obstruction by three senior radiologists based on comprehensive examinations and interventions within 48 hours after admission. Gradient-weighted class activation mapping was used to visualize the inferential explanation.</p><p><strong>Results: </strong>In the validation set, the Xception-backboned model achieved the highest accuracy (0.863), surpassing the VGG16 (0.847) and ResNet models (0.836). In the test set, the Xception model (accuracy: 0.807) outperformed other models and a junior radiologist (0.780) but not a senior radiologist (0.840). In the AI-aided diagnostic framework, the junior and senior radiologists made their judgements while aware of the Xception model predictions. Their accuracy significantly improved to 0.887 and 0.913, respectively.</p><p><strong>Conclusions: </strong>We developed and validated DL-based computer vision models for diagnosing bowel obstruction on plain abdominal radiograph. DL-based computer-aided diagnostic systems could reduce medical practitioners' workloads and improve diagnostic accuracy.</p>\",\"PeriodicalId\":16129,\"journal\":{\"name\":\"Journal of International Medical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439178/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of International Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/03000605241271844\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of International Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/03000605241271844","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Development and validation of deep learning models for bowel obstruction on plain abdominal radiograph.
Objective: Artificial intelligence (AI) could help medical practitioners in analyzing radiological images to determine the presence and site of bowel obstruction. This retrospective diagnostic study proposed a series of deep learning (DL) models for diagnosing bowel obstruction on abdominal radiograph.
Methods: A total of 2082 upright plain abdominal radiographs were retrospectively collected from four hospitals. The images were labeled as normal, small bowel obstruction and large bowel obstruction by three senior radiologists based on comprehensive examinations and interventions within 48 hours after admission. Gradient-weighted class activation mapping was used to visualize the inferential explanation.
Results: In the validation set, the Xception-backboned model achieved the highest accuracy (0.863), surpassing the VGG16 (0.847) and ResNet models (0.836). In the test set, the Xception model (accuracy: 0.807) outperformed other models and a junior radiologist (0.780) but not a senior radiologist (0.840). In the AI-aided diagnostic framework, the junior and senior radiologists made their judgements while aware of the Xception model predictions. Their accuracy significantly improved to 0.887 and 0.913, respectively.
Conclusions: We developed and validated DL-based computer vision models for diagnosing bowel obstruction on plain abdominal radiograph. DL-based computer-aided diagnostic systems could reduce medical practitioners' workloads and improve diagnostic accuracy.
期刊介绍:
_Journal of International Medical Research_ is a leading international journal for rapid publication of original medical, pre-clinical and clinical research, reviews, preliminary and pilot studies on a page charge basis.
As a service to authors, every article accepted by peer review will be given a full technical edit to make papers as accessible and readable to the international medical community as rapidly as possible.
Once the technical edit queries have been answered to the satisfaction of the journal, the paper will be published and made available freely to everyone under a creative commons licence.
Symposium proceedings, summaries of presentations or collections of medical, pre-clinical or clinical data on a specific topic are welcome for publication as supplements.
Print ISSN: 0300-0605