{"title":"香兰素能减轻帕金森病小鼠模型中 MPTP 诱导的 α-突触核蛋白病:洞察 Wnt/β-Catenin 信号的参与。","authors":"Linchi Rani, Amal Chandra Mondal","doi":"10.31083/j.jin2309175","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The abnormal aggregation of α-synuclein (α-syn) in the substantia nigra pars compacta (SNpc) region of the brain is characteristic of Parkinson's disease (PD), leading to the selective demise of neurons. Modifications in the post-translational processing of α-syn, phosphorylation at Ser<sup>129</sup> in particular, are implicated in α-syn aggregation and are considered key hallmarks of PD. Furthermore, dysregulated Wnt/β-catenin signaling, influenced by glycogen synthase kinase-3 beta (GSK-3β), is implicated in PD pathogenesis. Inhibition of GSK-3β holds promise in promoting neuroprotection by enhancing the Wnt/β-catenin pathway.</p><p><strong>Methods: </strong>In our previous study utilizing 1-methyl-4-phenylpyridinium (MPP<sup>+</sup>)-administered differentiated SH-SY5Y cells and a PD mouse model, we explored Vanillin's neuroprotective properties and related mechanisms against neuronal loss induced by MPP<sup>+</sup>/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. In the current study, we elucidated the mitigating effects of Vanillin on motor impairments, P-Ser<sup>129</sup>-α-syn expression, Wnt/β-catenin signaling, and autophagic neuron death induced by MPTP in a mouse model of PD by performing motor function tests, western blot analysis and immunostaining.</p><p><strong>Results: </strong>Our results show that Vanillin effectively modulated the motor dysfunctions, GSK-3β expression, and activity, activated the Wnt/β-catenin signaling, and reduced autophagic neuronal demise in the MPTP-lesioned mice, highlighting its neuroprotective effects.</p><p><strong>Conclusions: </strong>These findings underscore the complex interplay between α-syn pathology, GSK-3β, Wnt/β-catenin signaling, and autophagic-cell death in PD pathogenesis. Targeting these pathways, particularly with Vanillin, can be a promising therapeutic strategy for restoring dopaminergic (DA-ergic) neuronal homeostasis and slowing the progression of PD. Further research is crucial to resolving existing disputes and translating these discoveries into effective therapeutic interventions for PD patients.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 9","pages":"175"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vanillin Mitigates the MPTP-Induced α-Synucleinopathy in a Mouse Model of Parkinson's Disease: Insights into the Involvement of Wnt/β-Catenin Signaling.\",\"authors\":\"Linchi Rani, Amal Chandra Mondal\",\"doi\":\"10.31083/j.jin2309175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The abnormal aggregation of α-synuclein (α-syn) in the substantia nigra pars compacta (SNpc) region of the brain is characteristic of Parkinson's disease (PD), leading to the selective demise of neurons. Modifications in the post-translational processing of α-syn, phosphorylation at Ser<sup>129</sup> in particular, are implicated in α-syn aggregation and are considered key hallmarks of PD. Furthermore, dysregulated Wnt/β-catenin signaling, influenced by glycogen synthase kinase-3 beta (GSK-3β), is implicated in PD pathogenesis. Inhibition of GSK-3β holds promise in promoting neuroprotection by enhancing the Wnt/β-catenin pathway.</p><p><strong>Methods: </strong>In our previous study utilizing 1-methyl-4-phenylpyridinium (MPP<sup>+</sup>)-administered differentiated SH-SY5Y cells and a PD mouse model, we explored Vanillin's neuroprotective properties and related mechanisms against neuronal loss induced by MPP<sup>+</sup>/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. In the current study, we elucidated the mitigating effects of Vanillin on motor impairments, P-Ser<sup>129</sup>-α-syn expression, Wnt/β-catenin signaling, and autophagic neuron death induced by MPTP in a mouse model of PD by performing motor function tests, western blot analysis and immunostaining.</p><p><strong>Results: </strong>Our results show that Vanillin effectively modulated the motor dysfunctions, GSK-3β expression, and activity, activated the Wnt/β-catenin signaling, and reduced autophagic neuronal demise in the MPTP-lesioned mice, highlighting its neuroprotective effects.</p><p><strong>Conclusions: </strong>These findings underscore the complex interplay between α-syn pathology, GSK-3β, Wnt/β-catenin signaling, and autophagic-cell death in PD pathogenesis. Targeting these pathways, particularly with Vanillin, can be a promising therapeutic strategy for restoring dopaminergic (DA-ergic) neuronal homeostasis and slowing the progression of PD. Further research is crucial to resolving existing disputes and translating these discoveries into effective therapeutic interventions for PD patients.</p>\",\"PeriodicalId\":16160,\"journal\":{\"name\":\"Journal of integrative neuroscience\",\"volume\":\"23 9\",\"pages\":\"175\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of integrative neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.31083/j.jin2309175\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.jin2309175","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Vanillin Mitigates the MPTP-Induced α-Synucleinopathy in a Mouse Model of Parkinson's Disease: Insights into the Involvement of Wnt/β-Catenin Signaling.
Background: The abnormal aggregation of α-synuclein (α-syn) in the substantia nigra pars compacta (SNpc) region of the brain is characteristic of Parkinson's disease (PD), leading to the selective demise of neurons. Modifications in the post-translational processing of α-syn, phosphorylation at Ser129 in particular, are implicated in α-syn aggregation and are considered key hallmarks of PD. Furthermore, dysregulated Wnt/β-catenin signaling, influenced by glycogen synthase kinase-3 beta (GSK-3β), is implicated in PD pathogenesis. Inhibition of GSK-3β holds promise in promoting neuroprotection by enhancing the Wnt/β-catenin pathway.
Methods: In our previous study utilizing 1-methyl-4-phenylpyridinium (MPP+)-administered differentiated SH-SY5Y cells and a PD mouse model, we explored Vanillin's neuroprotective properties and related mechanisms against neuronal loss induced by MPP+/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. In the current study, we elucidated the mitigating effects of Vanillin on motor impairments, P-Ser129-α-syn expression, Wnt/β-catenin signaling, and autophagic neuron death induced by MPTP in a mouse model of PD by performing motor function tests, western blot analysis and immunostaining.
Results: Our results show that Vanillin effectively modulated the motor dysfunctions, GSK-3β expression, and activity, activated the Wnt/β-catenin signaling, and reduced autophagic neuronal demise in the MPTP-lesioned mice, highlighting its neuroprotective effects.
Conclusions: These findings underscore the complex interplay between α-syn pathology, GSK-3β, Wnt/β-catenin signaling, and autophagic-cell death in PD pathogenesis. Targeting these pathways, particularly with Vanillin, can be a promising therapeutic strategy for restoring dopaminergic (DA-ergic) neuronal homeostasis and slowing the progression of PD. Further research is crucial to resolving existing disputes and translating these discoveries into effective therapeutic interventions for PD patients.
期刊介绍:
JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.