Ivy H Song, Grace Chen, Siobhan Hayes, Colm Farrell, Claudia Jomphe, Nathalie H Gosselin, Kefeng Sun
{"title":"感染巨细胞病毒的移植受者体内马利巴韦的群体药代动力学和暴露-反应关系。","authors":"Ivy H Song, Grace Chen, Siobhan Hayes, Colm Farrell, Claudia Jomphe, Nathalie H Gosselin, Kefeng Sun","doi":"10.1007/s10928-024-09939-2","DOIUrl":null,"url":null,"abstract":"<p><p>Maribavir is approved for management of post-transplant cytomegalovirus (CMV) infections refractory and/or resistant to CMV therapies at a dose of 400 mg twice daily (BID). Population pharmacokinetic (PopPK) and exposure-response analyses were conducted to support the appropriateness of 400 mg BID dosing. A PopPK model was developed using non-linear mixed-effects modeling with pooled maribavir plasma concentration-time data from phase 1 and 2 studies (from 100 mg up to 1200 mg as single or repeated doses) and the phase 3 SOLSTICE study (400 mg BID). Exposure-response analyses were performed for efficacy, safety, and viral resistance based on data collected in the SOLSTICE study. Maribavir PK after oral administration was adequately described by a two-compartment model with first-order elimination, first-order absorption, and an absorption lag-time. There was no evidence that maribavir PK was affected by age, sex, race, diarrhea, vomiting, disease characteristics, or concomitant use of histamine H<sub>2</sub> blockers, or proton pump inhibitors. In the SOLSTICE study, higher maribavir exposure was not associated with increased probability of achieving CMV DNA viremia clearance, nor with reduced probability of treatment-emergent maribavir-resistant CMV mutations. A statistically significant association with maribavir exposure was identified for taste disturbance, fatigue, and treatment-emergent serious adverse events, while transplant type, enrollment region, CMV DNA level at baseline, and/or CMV resistance at baseline were identified as additional risk factors for these safety outcomes. In conclusion, the findings of these PopPK and exposure-response analyses provide further support for the recommended maribavir dose of 400 mg BID.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"887-904"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579209/pdf/","citationCount":"0","resultStr":"{\"title\":\"Population pharmacokinetics and exposure-response relationships of maribavir in transplant recipients with cytomegalovirus infection.\",\"authors\":\"Ivy H Song, Grace Chen, Siobhan Hayes, Colm Farrell, Claudia Jomphe, Nathalie H Gosselin, Kefeng Sun\",\"doi\":\"10.1007/s10928-024-09939-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maribavir is approved for management of post-transplant cytomegalovirus (CMV) infections refractory and/or resistant to CMV therapies at a dose of 400 mg twice daily (BID). Population pharmacokinetic (PopPK) and exposure-response analyses were conducted to support the appropriateness of 400 mg BID dosing. A PopPK model was developed using non-linear mixed-effects modeling with pooled maribavir plasma concentration-time data from phase 1 and 2 studies (from 100 mg up to 1200 mg as single or repeated doses) and the phase 3 SOLSTICE study (400 mg BID). Exposure-response analyses were performed for efficacy, safety, and viral resistance based on data collected in the SOLSTICE study. Maribavir PK after oral administration was adequately described by a two-compartment model with first-order elimination, first-order absorption, and an absorption lag-time. There was no evidence that maribavir PK was affected by age, sex, race, diarrhea, vomiting, disease characteristics, or concomitant use of histamine H<sub>2</sub> blockers, or proton pump inhibitors. In the SOLSTICE study, higher maribavir exposure was not associated with increased probability of achieving CMV DNA viremia clearance, nor with reduced probability of treatment-emergent maribavir-resistant CMV mutations. A statistically significant association with maribavir exposure was identified for taste disturbance, fatigue, and treatment-emergent serious adverse events, while transplant type, enrollment region, CMV DNA level at baseline, and/or CMV resistance at baseline were identified as additional risk factors for these safety outcomes. In conclusion, the findings of these PopPK and exposure-response analyses provide further support for the recommended maribavir dose of 400 mg BID.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\" \",\"pages\":\"887-904\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579209/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-024-09939-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09939-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Population pharmacokinetics and exposure-response relationships of maribavir in transplant recipients with cytomegalovirus infection.
Maribavir is approved for management of post-transplant cytomegalovirus (CMV) infections refractory and/or resistant to CMV therapies at a dose of 400 mg twice daily (BID). Population pharmacokinetic (PopPK) and exposure-response analyses were conducted to support the appropriateness of 400 mg BID dosing. A PopPK model was developed using non-linear mixed-effects modeling with pooled maribavir plasma concentration-time data from phase 1 and 2 studies (from 100 mg up to 1200 mg as single or repeated doses) and the phase 3 SOLSTICE study (400 mg BID). Exposure-response analyses were performed for efficacy, safety, and viral resistance based on data collected in the SOLSTICE study. Maribavir PK after oral administration was adequately described by a two-compartment model with first-order elimination, first-order absorption, and an absorption lag-time. There was no evidence that maribavir PK was affected by age, sex, race, diarrhea, vomiting, disease characteristics, or concomitant use of histamine H2 blockers, or proton pump inhibitors. In the SOLSTICE study, higher maribavir exposure was not associated with increased probability of achieving CMV DNA viremia clearance, nor with reduced probability of treatment-emergent maribavir-resistant CMV mutations. A statistically significant association with maribavir exposure was identified for taste disturbance, fatigue, and treatment-emergent serious adverse events, while transplant type, enrollment region, CMV DNA level at baseline, and/or CMV resistance at baseline were identified as additional risk factors for these safety outcomes. In conclusion, the findings of these PopPK and exposure-response analyses provide further support for the recommended maribavir dose of 400 mg BID.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.