{"title":"在铜绿素诱导的脱髓鞘小鼠模型中,Olig2+单集落衍生颅骨骨髓间充质干细胞实现了更好的再生。","authors":"Deqing Peng, Ruijie Lu, Leyao Lü, Qing Yao, Kaichuang Yang, Yunfeng Xu, Xiaoming Feng, Ruolang Pan, Yuyuan Ma","doi":"10.1631/jzus.B2300790","DOIUrl":null,"url":null,"abstract":"<p><p>Oligodendrocytes are the myelinating cells of the central nervous system. Brain injury and neurodegenerative disease often lead to oligodendrocyte death and subsequent demyelination-related pathological changes, resulting in neurological defects and cognitive impairment (Spaas et al., 2021; Zhang J et al., 2022). Multiple sclerosis (MS) is a major demyelinating disease of the central nervous system. The pathology of MS is characterized by the loss of myelin, oligodendrocytes, and axons in the brain, brain stem, and spinal cord, as well as by white matter lesions (Lassmann et al., 2007). Unfortunately, no definitive cure for MS has been developed. Immunomodulatory and anti-inflammatory drugs are effective in the relapsing-remitting phase of MS because they reduce the frequency of relapses and the formation of inflammatory lesions; however, they do not alter the course of progressive MS and are insufficient to cure chronic neurological dysfunction (Xiao et al., 2015; Zhang et al., 2021). The treatment outcome is even worse for MS patients with primary and secondary progressions. Mesenchymal stem cells (MSCs) are stromal cells that can self-renew and exhibit multilineage differentiation. MSCs are easy to expand in vitro and exhibit low immunogenicity, no tumorigenic risks, and ethical controversies, making them a promising candidate for regenerative medicine (Zhang L et al., 2022; Xu et al., 2023). Many studies have confirmed the neural differentiation potential of MSCs under certain conditions, making them a prime candidate for treating neurodegenerative diseases (Jang et al., 2010; Yan et al., 2013). The present study investigated the effects of cranial bone-marrow mesenchymal stem cells (cBMMSCs) and oligodendrocyte-specific protein 2-positive (Olig2<sup>+</sup>) single-colony-derived cBMMSC (sc-cBMMSC), isolated in our previous work (Yang et al., 2022), in a central nervous system demyelination mouse model.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":" ","pages":"1-7"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Olig2<sup>+</sup> single-colony-derived cranial bone-marrow mesenchymal stem cells achieve improved regeneration in a cuprizone-induced demyelination mouse model.\",\"authors\":\"Deqing Peng, Ruijie Lu, Leyao Lü, Qing Yao, Kaichuang Yang, Yunfeng Xu, Xiaoming Feng, Ruolang Pan, Yuyuan Ma\",\"doi\":\"10.1631/jzus.B2300790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oligodendrocytes are the myelinating cells of the central nervous system. Brain injury and neurodegenerative disease often lead to oligodendrocyte death and subsequent demyelination-related pathological changes, resulting in neurological defects and cognitive impairment (Spaas et al., 2021; Zhang J et al., 2022). Multiple sclerosis (MS) is a major demyelinating disease of the central nervous system. The pathology of MS is characterized by the loss of myelin, oligodendrocytes, and axons in the brain, brain stem, and spinal cord, as well as by white matter lesions (Lassmann et al., 2007). Unfortunately, no definitive cure for MS has been developed. Immunomodulatory and anti-inflammatory drugs are effective in the relapsing-remitting phase of MS because they reduce the frequency of relapses and the formation of inflammatory lesions; however, they do not alter the course of progressive MS and are insufficient to cure chronic neurological dysfunction (Xiao et al., 2015; Zhang et al., 2021). The treatment outcome is even worse for MS patients with primary and secondary progressions. Mesenchymal stem cells (MSCs) are stromal cells that can self-renew and exhibit multilineage differentiation. MSCs are easy to expand in vitro and exhibit low immunogenicity, no tumorigenic risks, and ethical controversies, making them a promising candidate for regenerative medicine (Zhang L et al., 2022; Xu et al., 2023). Many studies have confirmed the neural differentiation potential of MSCs under certain conditions, making them a prime candidate for treating neurodegenerative diseases (Jang et al., 2010; Yan et al., 2013). The present study investigated the effects of cranial bone-marrow mesenchymal stem cells (cBMMSCs) and oligodendrocyte-specific protein 2-positive (Olig2<sup>+</sup>) single-colony-derived cBMMSC (sc-cBMMSC), isolated in our previous work (Yang et al., 2022), in a central nervous system demyelination mouse model.</p>\",\"PeriodicalId\":17797,\"journal\":{\"name\":\"Journal of Zhejiang University SCIENCE B\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University SCIENCE B\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.B2300790\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University SCIENCE B","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1631/jzus.B2300790","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
少突胶质细胞是中枢神经系统的髓鞘细胞。脑损伤和神经退行性疾病通常会导致少突胶质细胞死亡,继而引起脱髓鞘相关病理变化,导致神经系统缺陷和认知障碍(Spaas 等人,2021 年;Zhang J 等人,2022 年)。多发性硬化症(MS)是中枢神经系统的一种主要脱髓鞘疾病。多发性硬化症的病理特征是大脑、脑干和脊髓中髓鞘、少突胶质细胞和轴突的丧失,以及白质病变(Lassmann 等人,2007 年)。遗憾的是,多发性硬化症还没有得到彻底治愈。免疫调节和抗炎药物对多发性硬化症的复发缓解期有效,因为它们能减少复发的频率和炎症病灶的形成;然而,它们并不能改变进行性多发性硬化症的病程,也不足以治愈慢性神经功能障碍(Xiao 等,2015 年;Zhang 等,2021 年)。对于原发性和继发性进展的多发性硬化症患者来说,治疗效果更差。间充质干细胞(MSCs)是一种基质细胞,可以自我更新并表现出多线分化。间充质干细胞易于体外扩增,免疫原性低,无致瘤风险,无伦理争议,是再生医学的理想候选细胞(Zhang L et al.)许多研究已证实间充质干细胞在特定条件下具有神经分化潜能,使其成为治疗神经退行性疾病的主要候选者(Jang 等,2010;Yan 等,2013)。本研究探讨了颅骨骨髓间充质干细胞(cBMMSCs)和少突胶质细胞特异性蛋白2阳性(Olig2+)单集落衍生cBMMSC(sc-cBMMSC)在中枢神经系统脱髓鞘小鼠模型中的作用。
Olig2+ single-colony-derived cranial bone-marrow mesenchymal stem cells achieve improved regeneration in a cuprizone-induced demyelination mouse model.
Oligodendrocytes are the myelinating cells of the central nervous system. Brain injury and neurodegenerative disease often lead to oligodendrocyte death and subsequent demyelination-related pathological changes, resulting in neurological defects and cognitive impairment (Spaas et al., 2021; Zhang J et al., 2022). Multiple sclerosis (MS) is a major demyelinating disease of the central nervous system. The pathology of MS is characterized by the loss of myelin, oligodendrocytes, and axons in the brain, brain stem, and spinal cord, as well as by white matter lesions (Lassmann et al., 2007). Unfortunately, no definitive cure for MS has been developed. Immunomodulatory and anti-inflammatory drugs are effective in the relapsing-remitting phase of MS because they reduce the frequency of relapses and the formation of inflammatory lesions; however, they do not alter the course of progressive MS and are insufficient to cure chronic neurological dysfunction (Xiao et al., 2015; Zhang et al., 2021). The treatment outcome is even worse for MS patients with primary and secondary progressions. Mesenchymal stem cells (MSCs) are stromal cells that can self-renew and exhibit multilineage differentiation. MSCs are easy to expand in vitro and exhibit low immunogenicity, no tumorigenic risks, and ethical controversies, making them a promising candidate for regenerative medicine (Zhang L et al., 2022; Xu et al., 2023). Many studies have confirmed the neural differentiation potential of MSCs under certain conditions, making them a prime candidate for treating neurodegenerative diseases (Jang et al., 2010; Yan et al., 2013). The present study investigated the effects of cranial bone-marrow mesenchymal stem cells (cBMMSCs) and oligodendrocyte-specific protein 2-positive (Olig2+) single-colony-derived cBMMSC (sc-cBMMSC), isolated in our previous work (Yang et al., 2022), in a central nervous system demyelination mouse model.
期刊介绍:
Journal of Zheijang University SCIENCE B - Biomedicine & Biotechnology is an international journal that aims to present the latest development and achievements in scientific research in China and abroad to the world’s scientific community.
JZUS-B covers research in Biomedicine and Biotechnology and Biochemistry and topics related to life science subjects, such as Plant and Animal Sciences, Environment and Resource etc.