Velaphi C Thipe, Nya Hall, Amoolya Pandurangi, Samuel Ajayi, Prosper Emeh, Iti Gauttam, Rania Ghamgui, Fatima Hameedat, Sihem Khelil, Nhu Ky Ly, Mahmoud Salim, Anum Shahid Waleed, Prajna Hegde, Vrushali Hegde, Deepa Prakash, Ilaadevi Hegde, Kavita Katti, Alice Raphael Karikachery, Emilie Roger, Anne Landreau, Kattesh V Katti
{"title":"利用银杏叶植物化学物质功能化金纳米粒子防治乳腺癌的纳米吠陀医学方法。","authors":"Velaphi C Thipe, Nya Hall, Amoolya Pandurangi, Samuel Ajayi, Prosper Emeh, Iti Gauttam, Rania Ghamgui, Fatima Hameedat, Sihem Khelil, Nhu Ky Ly, Mahmoud Salim, Anum Shahid Waleed, Prajna Hegde, Vrushali Hegde, Deepa Prakash, Ilaadevi Hegde, Kavita Katti, Alice Raphael Karikachery, Emilie Roger, Anne Landreau, Kattesh V Katti","doi":"10.2147/NSA.S478533","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Breast cancer is a significant global health issue, contributing to 15% of cancer-related deaths. Our laboratory has pioneered a novel approach, combining Ayurvedic principles with green nanotechnology, to develop a scientifically rigorous medical modality referred to as Nano-Ayurvedic Medicine, recently approved by the US Patents and Trademarks Office. Here in we report a new Nano-Ayurvedic medicine agent derived from gold nanoparticles encapsulated with phytochemicals from <i>Ginkgo biloba</i> plant (GB-AuNPs).</p><p><strong>Methods: </strong>We have developed biocompatible gold nanoparticles using electron-rich phytochemicals from <i>Ginkgo biloba</i> as reducing agent cocktail. <i>Ginkgo biloba</i> phytochemical-encapsulated gold nanoparticles (GB-AuNPs) were fully characterized, and their anticancer activity, including immunomodulatory profiles, were evaluated against breast (MDAMB-231) cancer cell lines.</p><p><strong>Results: </strong>Characterization revealed spherical morphology for GB-AuNPs and possessed optimum in vitro stability through high zeta potential of -34 mV for optimum in vivo stability. The core size of GB-AuNPs of 19 nm allows for penetration into tumor cells through both EPR effects as well as through the receptor-mediated endocytosis. The Antitumor efficacy of this nano-ayurvedic medicine agent revealed strong antitumor effects of GB-AuNPs towards MDAMB-231. Our investigations reveal that GB-AuNPs enhance anti-tumor cytokines (IL-12, TNF-α, IFN-γ) and reduce pro-tumor cytokines (IL-10, IL-6), promoting the conversion of protumor M2 macrophages into M1-like macrophage antitumor phenotype. Cellular studies show that GB-AuNPs offer superior anti-tumor efficacy and a better safety profile against breast tumors compared to cisplatin.</p><p><strong>Conclusion: </strong>Our investigations have demonstrated that the nano-ayurvedic medicine agent, GB-AuNPs, treats cancers through an immunomodulatory mechanism facilitated by elevated levels of anti-tumor cytokines (TNF-α, IFN-γ and IL-12) with concomitant downregulation of pro-tumor cytokines expression (IL-6 and IL-10). The green nanotechnology approach for the development of nano-ayurvedic medicine agent (GB-AuNPs), as described in this paper, presents new and attractive opportunities for treating human cancers and other debilitating diseases and disorders.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"17 ","pages":"189-210"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430862/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nano-Ayurvedic Medicine Approaches Using <i>Ginkgo biloba</i>-Phytochemicals Functionalized Gold Nanoparticles Against Breast Cancer.\",\"authors\":\"Velaphi C Thipe, Nya Hall, Amoolya Pandurangi, Samuel Ajayi, Prosper Emeh, Iti Gauttam, Rania Ghamgui, Fatima Hameedat, Sihem Khelil, Nhu Ky Ly, Mahmoud Salim, Anum Shahid Waleed, Prajna Hegde, Vrushali Hegde, Deepa Prakash, Ilaadevi Hegde, Kavita Katti, Alice Raphael Karikachery, Emilie Roger, Anne Landreau, Kattesh V Katti\",\"doi\":\"10.2147/NSA.S478533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Breast cancer is a significant global health issue, contributing to 15% of cancer-related deaths. Our laboratory has pioneered a novel approach, combining Ayurvedic principles with green nanotechnology, to develop a scientifically rigorous medical modality referred to as Nano-Ayurvedic Medicine, recently approved by the US Patents and Trademarks Office. Here in we report a new Nano-Ayurvedic medicine agent derived from gold nanoparticles encapsulated with phytochemicals from <i>Ginkgo biloba</i> plant (GB-AuNPs).</p><p><strong>Methods: </strong>We have developed biocompatible gold nanoparticles using electron-rich phytochemicals from <i>Ginkgo biloba</i> as reducing agent cocktail. <i>Ginkgo biloba</i> phytochemical-encapsulated gold nanoparticles (GB-AuNPs) were fully characterized, and their anticancer activity, including immunomodulatory profiles, were evaluated against breast (MDAMB-231) cancer cell lines.</p><p><strong>Results: </strong>Characterization revealed spherical morphology for GB-AuNPs and possessed optimum in vitro stability through high zeta potential of -34 mV for optimum in vivo stability. The core size of GB-AuNPs of 19 nm allows for penetration into tumor cells through both EPR effects as well as through the receptor-mediated endocytosis. The Antitumor efficacy of this nano-ayurvedic medicine agent revealed strong antitumor effects of GB-AuNPs towards MDAMB-231. Our investigations reveal that GB-AuNPs enhance anti-tumor cytokines (IL-12, TNF-α, IFN-γ) and reduce pro-tumor cytokines (IL-10, IL-6), promoting the conversion of protumor M2 macrophages into M1-like macrophage antitumor phenotype. Cellular studies show that GB-AuNPs offer superior anti-tumor efficacy and a better safety profile against breast tumors compared to cisplatin.</p><p><strong>Conclusion: </strong>Our investigations have demonstrated that the nano-ayurvedic medicine agent, GB-AuNPs, treats cancers through an immunomodulatory mechanism facilitated by elevated levels of anti-tumor cytokines (TNF-α, IFN-γ and IL-12) with concomitant downregulation of pro-tumor cytokines expression (IL-6 and IL-10). The green nanotechnology approach for the development of nano-ayurvedic medicine agent (GB-AuNPs), as described in this paper, presents new and attractive opportunities for treating human cancers and other debilitating diseases and disorders.</p>\",\"PeriodicalId\":18881,\"journal\":{\"name\":\"Nanotechnology, Science and Applications\",\"volume\":\"17 \",\"pages\":\"189-210\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430862/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology, Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/NSA.S478533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/NSA.S478533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Nano-Ayurvedic Medicine Approaches Using Ginkgo biloba-Phytochemicals Functionalized Gold Nanoparticles Against Breast Cancer.
Purpose: Breast cancer is a significant global health issue, contributing to 15% of cancer-related deaths. Our laboratory has pioneered a novel approach, combining Ayurvedic principles with green nanotechnology, to develop a scientifically rigorous medical modality referred to as Nano-Ayurvedic Medicine, recently approved by the US Patents and Trademarks Office. Here in we report a new Nano-Ayurvedic medicine agent derived from gold nanoparticles encapsulated with phytochemicals from Ginkgo biloba plant (GB-AuNPs).
Methods: We have developed biocompatible gold nanoparticles using electron-rich phytochemicals from Ginkgo biloba as reducing agent cocktail. Ginkgo biloba phytochemical-encapsulated gold nanoparticles (GB-AuNPs) were fully characterized, and their anticancer activity, including immunomodulatory profiles, were evaluated against breast (MDAMB-231) cancer cell lines.
Results: Characterization revealed spherical morphology for GB-AuNPs and possessed optimum in vitro stability through high zeta potential of -34 mV for optimum in vivo stability. The core size of GB-AuNPs of 19 nm allows for penetration into tumor cells through both EPR effects as well as through the receptor-mediated endocytosis. The Antitumor efficacy of this nano-ayurvedic medicine agent revealed strong antitumor effects of GB-AuNPs towards MDAMB-231. Our investigations reveal that GB-AuNPs enhance anti-tumor cytokines (IL-12, TNF-α, IFN-γ) and reduce pro-tumor cytokines (IL-10, IL-6), promoting the conversion of protumor M2 macrophages into M1-like macrophage antitumor phenotype. Cellular studies show that GB-AuNPs offer superior anti-tumor efficacy and a better safety profile against breast tumors compared to cisplatin.
Conclusion: Our investigations have demonstrated that the nano-ayurvedic medicine agent, GB-AuNPs, treats cancers through an immunomodulatory mechanism facilitated by elevated levels of anti-tumor cytokines (TNF-α, IFN-γ and IL-12) with concomitant downregulation of pro-tumor cytokines expression (IL-6 and IL-10). The green nanotechnology approach for the development of nano-ayurvedic medicine agent (GB-AuNPs), as described in this paper, presents new and attractive opportunities for treating human cancers and other debilitating diseases and disorders.
期刊介绍:
Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.