纠正集合化学基因组学筛选中的普遍偏差,提高其可解释性。

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Systems Biology Pub Date : 2024-11-01 Epub Date: 2024-09-30 DOI:10.1038/s44320-024-00069-y
Lili M Kim, Horia Todor, Carol A Gross
{"title":"纠正集合化学基因组学筛选中的普遍偏差,提高其可解释性。","authors":"Lili M Kim, Horia Todor, Carol A Gross","doi":"10.1038/s44320-024-00069-y","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical genomics is a powerful and increasingly accessible technique to probe gene function, gene-gene interactions, and antibiotic synergies and antagonisms. Indeed, multiple large-scale pooled datasets in diverse organisms have been published. Here, we identify an artifact arising from uncorrected differences in the number of cell doublings between experiments within such datasets. We demonstrate that this artifact is widespread, show how it causes spurious gene-gene and drug-drug correlations, and present a simple but effective post hoc method for removing its effects. Using several published datasets, we demonstrate that this correction removes spurious correlations between genes and conditions, improving data interpretability and revealing new biological insights. Finally, we determine experimental factors that predispose a dataset for this artifact and suggest a set of experimental and computational guidelines for performing pooled chemical genomics experiments that will maximize the potential of this powerful technique.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535069/pdf/","citationCount":"0","resultStr":"{\"title\":\"Correction of a widespread bias in pooled chemical genomics screens improves their interpretability.\",\"authors\":\"Lili M Kim, Horia Todor, Carol A Gross\",\"doi\":\"10.1038/s44320-024-00069-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemical genomics is a powerful and increasingly accessible technique to probe gene function, gene-gene interactions, and antibiotic synergies and antagonisms. Indeed, multiple large-scale pooled datasets in diverse organisms have been published. Here, we identify an artifact arising from uncorrected differences in the number of cell doublings between experiments within such datasets. We demonstrate that this artifact is widespread, show how it causes spurious gene-gene and drug-drug correlations, and present a simple but effective post hoc method for removing its effects. Using several published datasets, we demonstrate that this correction removes spurious correlations between genes and conditions, improving data interpretability and revealing new biological insights. Finally, we determine experimental factors that predispose a dataset for this artifact and suggest a set of experimental and computational guidelines for performing pooled chemical genomics experiments that will maximize the potential of this powerful technique.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535069/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44320-024-00069-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-024-00069-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

化学基因组学是一项功能强大且越来越容易获得的技术,可用于探究基因功能、基因与基因之间的相互作用以及抗生素的协同作用和拮抗作用。事实上,多种生物的大规模集合数据集已经发表。在这里,我们发现了由于此类数据集中不同实验之间细胞倍增数的差异未得到校正而产生的假象。我们证明了这种假象的普遍性,展示了它如何导致虚假的基因-基因和药物-药物相关性,并提出了一种简单而有效的事后方法来消除其影响。通过使用几个已发表的数据集,我们证明了这种校正可以消除基因和条件之间的虚假相关性,从而提高数据的可解释性并揭示新的生物学观点。最后,我们确定了导致数据集出现这种伪影的实验因素,并提出了一套进行集合化学基因组学实验的实验和计算指南,以最大限度地发挥这项强大技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correction of a widespread bias in pooled chemical genomics screens improves their interpretability.

Chemical genomics is a powerful and increasingly accessible technique to probe gene function, gene-gene interactions, and antibiotic synergies and antagonisms. Indeed, multiple large-scale pooled datasets in diverse organisms have been published. Here, we identify an artifact arising from uncorrected differences in the number of cell doublings between experiments within such datasets. We demonstrate that this artifact is widespread, show how it causes spurious gene-gene and drug-drug correlations, and present a simple but effective post hoc method for removing its effects. Using several published datasets, we demonstrate that this correction removes spurious correlations between genes and conditions, improving data interpretability and revealing new biological insights. Finally, we determine experimental factors that predispose a dataset for this artifact and suggest a set of experimental and computational guidelines for performing pooled chemical genomics experiments that will maximize the potential of this powerful technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
期刊最新文献
Identifying T-cell clubs by embracing the local harmony between TCR and gene expressions. XCMS-METLIN: data-driven metabolite, lipid, and chemical analysis. Author Correction: Predictive evolution of metabolic phenotypes using model-designed environments. Correction of a widespread bias in pooled chemical genomics screens improves their interpretability. Prediction of the 3D cancer genome from whole-genome sequencing using InfoHiC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1