Marco Emili , Fiorenza Stagni , Carla Russo , Laura Angelozzi , Sandra Guidi , Renata Bartesaghi
{"title":"在唐氏综合征模型中使用多酚多苷进行药物干预,可逆转神经发育障碍并增强认知能力。","authors":"Marco Emili , Fiorenza Stagni , Carla Russo , Laura Angelozzi , Sandra Guidi , Renata Bartesaghi","doi":"10.1016/j.neuropharm.2024.110170","DOIUrl":null,"url":null,"abstract":"<div><div>Intellectual disability (ID) is the unavoidable hallmark of Down syndrome (DS), a genetic condition due to triplication of chromosome 21. ID in DS is largely attributable to neurogenesis and dendritogenesis alterations taking place in the prenatal/neonatal period, the most critical time window for brain development. There are currently no treatments for ID in DS. Considering the timeline of brain development, treatment aimed at improving the neurological phenotypes of DS should be initiated as early as possible and use safe agents. The goal of this study was to establish whether it is possible to improve DS-linked neurodevelopmental defects through early treatment with polydatin, a natural polyphenol. We used the Ts65Dn mouse model of DS and focused on the hippocampus, a brain region fundamental for long-term memory. We found that in Ts65Dn mice of both sexes treated with polydatin from postnatal (P) day 3 to P15 there was full restoration of neurogenesis, neuron number, and dendritic development. These effects were accompanied by normalization of Cyclin D1 and DSCAM levels, which may account for the rescue of neurogenesis and dendritogenesis, respectively. Importantly, in Ts65Dn mice treated with polydatin from P3 to adolescence (∼P50) there was full restoration of hippocampus-dependent memory, indicating a pro-cognitive outcome of treatment. No adverse effects were observed on the body and brain weight. The efficacy and safety of polydatin in a model of DS prospect the possibility of its use during early life stages for amelioration of DS-linked neurodevelopmental alterations.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"261 ","pages":"Article 110170"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversal of neurodevelopmental impairment and cognitive enhancement by pharmacological intervention with the polyphenol polydatin in a Down syndrome model\",\"authors\":\"Marco Emili , Fiorenza Stagni , Carla Russo , Laura Angelozzi , Sandra Guidi , Renata Bartesaghi\",\"doi\":\"10.1016/j.neuropharm.2024.110170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intellectual disability (ID) is the unavoidable hallmark of Down syndrome (DS), a genetic condition due to triplication of chromosome 21. ID in DS is largely attributable to neurogenesis and dendritogenesis alterations taking place in the prenatal/neonatal period, the most critical time window for brain development. There are currently no treatments for ID in DS. Considering the timeline of brain development, treatment aimed at improving the neurological phenotypes of DS should be initiated as early as possible and use safe agents. The goal of this study was to establish whether it is possible to improve DS-linked neurodevelopmental defects through early treatment with polydatin, a natural polyphenol. We used the Ts65Dn mouse model of DS and focused on the hippocampus, a brain region fundamental for long-term memory. We found that in Ts65Dn mice of both sexes treated with polydatin from postnatal (P) day 3 to P15 there was full restoration of neurogenesis, neuron number, and dendritic development. These effects were accompanied by normalization of Cyclin D1 and DSCAM levels, which may account for the rescue of neurogenesis and dendritogenesis, respectively. Importantly, in Ts65Dn mice treated with polydatin from P3 to adolescence (∼P50) there was full restoration of hippocampus-dependent memory, indicating a pro-cognitive outcome of treatment. No adverse effects were observed on the body and brain weight. The efficacy and safety of polydatin in a model of DS prospect the possibility of its use during early life stages for amelioration of DS-linked neurodevelopmental alterations.</div></div>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\"261 \",\"pages\":\"Article 110170\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0028390824003393\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390824003393","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Reversal of neurodevelopmental impairment and cognitive enhancement by pharmacological intervention with the polyphenol polydatin in a Down syndrome model
Intellectual disability (ID) is the unavoidable hallmark of Down syndrome (DS), a genetic condition due to triplication of chromosome 21. ID in DS is largely attributable to neurogenesis and dendritogenesis alterations taking place in the prenatal/neonatal period, the most critical time window for brain development. There are currently no treatments for ID in DS. Considering the timeline of brain development, treatment aimed at improving the neurological phenotypes of DS should be initiated as early as possible and use safe agents. The goal of this study was to establish whether it is possible to improve DS-linked neurodevelopmental defects through early treatment with polydatin, a natural polyphenol. We used the Ts65Dn mouse model of DS and focused on the hippocampus, a brain region fundamental for long-term memory. We found that in Ts65Dn mice of both sexes treated with polydatin from postnatal (P) day 3 to P15 there was full restoration of neurogenesis, neuron number, and dendritic development. These effects were accompanied by normalization of Cyclin D1 and DSCAM levels, which may account for the rescue of neurogenesis and dendritogenesis, respectively. Importantly, in Ts65Dn mice treated with polydatin from P3 to adolescence (∼P50) there was full restoration of hippocampus-dependent memory, indicating a pro-cognitive outcome of treatment. No adverse effects were observed on the body and brain weight. The efficacy and safety of polydatin in a model of DS prospect the possibility of its use during early life stages for amelioration of DS-linked neurodevelopmental alterations.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).