表征异质性成分分析(ReDisCA)。

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2024-09-27 DOI:10.1016/j.neuroimage.2024.120868
Alexei Ossadtchi , Ilia Semenkov , Anna Zhuravleva , Vladimir Kozunov , Oleg Serikov , Ekaterina Voloshina
{"title":"表征异质性成分分析(ReDisCA)。","authors":"Alexei Ossadtchi ,&nbsp;Ilia Semenkov ,&nbsp;Anna Zhuravleva ,&nbsp;Vladimir Kozunov ,&nbsp;Oleg Serikov ,&nbsp;Ekaterina Voloshina","doi":"10.1016/j.neuroimage.2024.120868","DOIUrl":null,"url":null,"abstract":"<div><div>The principle of Representational Similarity Analysis (RSA) posits that neural representations reflect the structure of encoded information, allowing exploration of spatial and temporal organization of brain information processing. Traditional RSA when applied to EEG or MEG data faces challenges in accessing activation time series at the brain source level due to modeling complexities and insufficient geometric/anatomical data.</div><div>To overcome this, we introduce Representational Dissimilarity Component Analysis (ReDisCA), a method for estimating spatial–temporal components in EEG or MEG responses aligned with a target representational dissimilarity matrix (RDM). ReDisCA yields informative spatial filters and associated topographies, offering insights into the location of ”representationally relevant” sources. Applied to evoked response time series, ReDisCA produces temporal source activation profiles with the desired RDM. Importantly, while ReDisCA does not require inverse modeling its output is consistent with EEG and MEG observation equation and can be used as an input to rigorous source localization procedures.</div><div>Demonstrating ReDisCA’s efficacy through simulations and comparison with conventional methods, we show superior source localization accuracy and apply the method to real EEG and MEG datasets, revealing physiologically plausible representational structures without inverse modeling. ReDisCA adds to the family of inverse modeling free methods such as independent component analysis (Makeig, 1995), Spatial spectral decomposition (Nikulin, 2011), and Source power comodulation (Dähne, 2014) designed for extraction sources with desired properties from EEG or MEG data. Extending its utility beyond EEG and MEG analysis, ReDisCA is likely to find application in fMRI data analysis and exploration of representational structures emerging in multilayered artificial neural networks.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"301 ","pages":"Article 120868"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representational dissimilarity component analysis (ReDisCA)\",\"authors\":\"Alexei Ossadtchi ,&nbsp;Ilia Semenkov ,&nbsp;Anna Zhuravleva ,&nbsp;Vladimir Kozunov ,&nbsp;Oleg Serikov ,&nbsp;Ekaterina Voloshina\",\"doi\":\"10.1016/j.neuroimage.2024.120868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The principle of Representational Similarity Analysis (RSA) posits that neural representations reflect the structure of encoded information, allowing exploration of spatial and temporal organization of brain information processing. Traditional RSA when applied to EEG or MEG data faces challenges in accessing activation time series at the brain source level due to modeling complexities and insufficient geometric/anatomical data.</div><div>To overcome this, we introduce Representational Dissimilarity Component Analysis (ReDisCA), a method for estimating spatial–temporal components in EEG or MEG responses aligned with a target representational dissimilarity matrix (RDM). ReDisCA yields informative spatial filters and associated topographies, offering insights into the location of ”representationally relevant” sources. Applied to evoked response time series, ReDisCA produces temporal source activation profiles with the desired RDM. Importantly, while ReDisCA does not require inverse modeling its output is consistent with EEG and MEG observation equation and can be used as an input to rigorous source localization procedures.</div><div>Demonstrating ReDisCA’s efficacy through simulations and comparison with conventional methods, we show superior source localization accuracy and apply the method to real EEG and MEG datasets, revealing physiologically plausible representational structures without inverse modeling. ReDisCA adds to the family of inverse modeling free methods such as independent component analysis (Makeig, 1995), Spatial spectral decomposition (Nikulin, 2011), and Source power comodulation (Dähne, 2014) designed for extraction sources with desired properties from EEG or MEG data. Extending its utility beyond EEG and MEG analysis, ReDisCA is likely to find application in fMRI data analysis and exploration of representational structures emerging in multilayered artificial neural networks.</div></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\"301 \",\"pages\":\"Article 120868\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811924003653\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811924003653","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

表征相似性分析(RSA)原理认为,神经表征反映了编码信息的结构,允许探索大脑信息处理的空间和时间组织。由于建模复杂和几何/解剖数据不足,传统的 RSA 应用于脑电图或 MEG 数据时,在获取脑源水平的激活时间序列方面面临挑战。为了解决这个问题,我们引入了表征异质性成分分析(ReDisCA),这是一种估算与目标表征异质性矩阵(RDM)对齐的脑电图或 MEG 反应中的空间-时间成分的方法。ReDisCA 可生成信息丰富的空间滤波器和相关拓扑图,有助于深入了解 "表征相关 "源的位置。将 ReDisCA 应用于诱发反应时间序列时,可产生具有所需 RDM 的时间源激活剖面图。重要的是,虽然 ReDisCA 不需要反建模,但其输出结果与脑电图和 MEG 观察方程一致,可用作严格的源定位程序的输入。通过模拟和与传统方法的比较,我们展示了 ReDisCA 的功效,显示了卓越的源定位精度,并将该方法应用于真实的 EEG 和 MEG 数据集,揭示了生理上合理的表征结构,而无需反建模。ReDisCA 是独立成分分析法(Makeig,1995 年)、空间谱分解法(Nikulin,2011 年)和源功率调制法(Dähne,2014 年)等无逆建模方法系列的补充,这些方法旨在从 EEG 或 MEG 数据中提取具有所需属性的信号源。除 EEG 和 MEG 分析外,ReDisCA 还可应用于 fMRI 数据分析和探索多层人工神经网络中出现的表征结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Representational dissimilarity component analysis (ReDisCA)
The principle of Representational Similarity Analysis (RSA) posits that neural representations reflect the structure of encoded information, allowing exploration of spatial and temporal organization of brain information processing. Traditional RSA when applied to EEG or MEG data faces challenges in accessing activation time series at the brain source level due to modeling complexities and insufficient geometric/anatomical data.
To overcome this, we introduce Representational Dissimilarity Component Analysis (ReDisCA), a method for estimating spatial–temporal components in EEG or MEG responses aligned with a target representational dissimilarity matrix (RDM). ReDisCA yields informative spatial filters and associated topographies, offering insights into the location of ”representationally relevant” sources. Applied to evoked response time series, ReDisCA produces temporal source activation profiles with the desired RDM. Importantly, while ReDisCA does not require inverse modeling its output is consistent with EEG and MEG observation equation and can be used as an input to rigorous source localization procedures.
Demonstrating ReDisCA’s efficacy through simulations and comparison with conventional methods, we show superior source localization accuracy and apply the method to real EEG and MEG datasets, revealing physiologically plausible representational structures without inverse modeling. ReDisCA adds to the family of inverse modeling free methods such as independent component analysis (Makeig, 1995), Spatial spectral decomposition (Nikulin, 2011), and Source power comodulation (Dähne, 2014) designed for extraction sources with desired properties from EEG or MEG data. Extending its utility beyond EEG and MEG analysis, ReDisCA is likely to find application in fMRI data analysis and exploration of representational structures emerging in multilayered artificial neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Cerebellar representation during phonetic processing in tonal and non-tonal language speakers: An ALE meta-analysis. Deep learning applied to the segmentation of rodent brain MRI data outperforms noisy ground truth on full-fledged brain atlases. Development of A Novel Radioiodinated Compound for Amyloid and Tau Deposition imaging in Alzheimer's disease and Tauopathy Mouse Models. Investigating Unilateral and Bilateral Motor Imagery Control Using Electrocorticography and fMRI in Awake Craniotomy. Multiclass Classification of Alzheimer's Disease Prodromal Stages using Sequential Feature Embeddings and Regularized Multikernel Support Vector Machine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1