Lucas Fornari Laurindo , Enzo Pereira de Lima , Lívia Fornari Laurindo , Victória Dogani Rodrigues , Eduardo Federighi Baisi Chagas , Ricardo de Alvares Goulart , Adriano Cressoni Araújo , Elen Landgraf Guiguer , Karina Torres Pomini , Rose Eli Grassi Rici , Durvanei Augusto Maria , Rosa Direito , Sandra Maria Barbalho
{"title":"蜂毒衍生的蜂毒素和麦利素共轭物在癌症治疗中的治疗潜力:系统综述","authors":"Lucas Fornari Laurindo , Enzo Pereira de Lima , Lívia Fornari Laurindo , Victória Dogani Rodrigues , Eduardo Federighi Baisi Chagas , Ricardo de Alvares Goulart , Adriano Cressoni Araújo , Elen Landgraf Guiguer , Karina Torres Pomini , Rose Eli Grassi Rici , Durvanei Augusto Maria , Rosa Direito , Sandra Maria Barbalho","doi":"10.1016/j.phrs.2024.107430","DOIUrl":null,"url":null,"abstract":"<div><div>The therapeutic potential of bee venom-derived peptides, particularly apamin and melittin, in cancer treatment has garnered significant attention as a promising avenue for advancing oncology. This systematic review examines preclinical studies highlighting the emerging role of these peptides in enhancing cancer therapies. Melittin and apamin, when conjugated with other therapeutic agents or formulated into novel delivery systems, have demonstrated improved efficacy in targeting tumor cells. Key findings indicate that melittin-based conjugates, such as polyethylene glycol (PEG)ylated versions, show potential in enhancing therapeutic outcomes and minimizing toxicity across various cancer models. Similarly, apamin-conjugated formulations have improved the efficacy of established anti-cancer drugs, contributing to enhanced targeting and reduced systemic toxicity. These developments underscore a growing interest in leveraging bee venom-derived peptides as adjuncts in cancer therapy. The integration of these peptides into treatment regimens offers a promising strategy to address current limitations in cancer treatment, such as drug resistance and off-target effects. However, comprehensive validation through clinical trials is essential to confirm their safety and effectiveness in human patients. This review highlights the global emergence of bee venom-derived peptides in cancer treatment, advocating for continued research and development to fully realize their therapeutic potential.</div></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":"209 ","pages":"Article 107430"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The therapeutic potential of bee venom-derived Apamin and Melittin conjugates in cancer treatment: A systematic review\",\"authors\":\"Lucas Fornari Laurindo , Enzo Pereira de Lima , Lívia Fornari Laurindo , Victória Dogani Rodrigues , Eduardo Federighi Baisi Chagas , Ricardo de Alvares Goulart , Adriano Cressoni Araújo , Elen Landgraf Guiguer , Karina Torres Pomini , Rose Eli Grassi Rici , Durvanei Augusto Maria , Rosa Direito , Sandra Maria Barbalho\",\"doi\":\"10.1016/j.phrs.2024.107430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The therapeutic potential of bee venom-derived peptides, particularly apamin and melittin, in cancer treatment has garnered significant attention as a promising avenue for advancing oncology. This systematic review examines preclinical studies highlighting the emerging role of these peptides in enhancing cancer therapies. Melittin and apamin, when conjugated with other therapeutic agents or formulated into novel delivery systems, have demonstrated improved efficacy in targeting tumor cells. Key findings indicate that melittin-based conjugates, such as polyethylene glycol (PEG)ylated versions, show potential in enhancing therapeutic outcomes and minimizing toxicity across various cancer models. Similarly, apamin-conjugated formulations have improved the efficacy of established anti-cancer drugs, contributing to enhanced targeting and reduced systemic toxicity. These developments underscore a growing interest in leveraging bee venom-derived peptides as adjuncts in cancer therapy. The integration of these peptides into treatment regimens offers a promising strategy to address current limitations in cancer treatment, such as drug resistance and off-target effects. However, comprehensive validation through clinical trials is essential to confirm their safety and effectiveness in human patients. This review highlights the global emergence of bee venom-derived peptides in cancer treatment, advocating for continued research and development to fully realize their therapeutic potential.</div></div>\",\"PeriodicalId\":19918,\"journal\":{\"name\":\"Pharmacological research\",\"volume\":\"209 \",\"pages\":\"Article 107430\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S104366182400375X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104366182400375X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The therapeutic potential of bee venom-derived Apamin and Melittin conjugates in cancer treatment: A systematic review
The therapeutic potential of bee venom-derived peptides, particularly apamin and melittin, in cancer treatment has garnered significant attention as a promising avenue for advancing oncology. This systematic review examines preclinical studies highlighting the emerging role of these peptides in enhancing cancer therapies. Melittin and apamin, when conjugated with other therapeutic agents or formulated into novel delivery systems, have demonstrated improved efficacy in targeting tumor cells. Key findings indicate that melittin-based conjugates, such as polyethylene glycol (PEG)ylated versions, show potential in enhancing therapeutic outcomes and minimizing toxicity across various cancer models. Similarly, apamin-conjugated formulations have improved the efficacy of established anti-cancer drugs, contributing to enhanced targeting and reduced systemic toxicity. These developments underscore a growing interest in leveraging bee venom-derived peptides as adjuncts in cancer therapy. The integration of these peptides into treatment regimens offers a promising strategy to address current limitations in cancer treatment, such as drug resistance and off-target effects. However, comprehensive validation through clinical trials is essential to confirm their safety and effectiveness in human patients. This review highlights the global emergence of bee venom-derived peptides in cancer treatment, advocating for continued research and development to fully realize their therapeutic potential.
期刊介绍:
Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.