Eman A Bseiso, Nermin M Sheta, Khaled M Abdel-Haleem
{"title":"基于纳米微粒的鼻内给药治疗不同中枢神经系统疾病的最新进展。","authors":"Eman A Bseiso, Nermin M Sheta, Khaled M Abdel-Haleem","doi":"10.1080/10837450.2024.2409807","DOIUrl":null,"url":null,"abstract":"<p><p>Drug administration to the central nervous system (CNS) has become a great obstacle because of several biological barriers, such as the blood-brain barrier, therefore, brain targeting insights are a light for scientists to move forward for treating neurogenerative diseases using advanced non-invasive methods. The current demand is to use a potential direct route as the nasal administration to transport drugs into the brain enhancing the BBB permeability and hence, increasing the bioavailability. Interestingly, recent techniques have been implanted in formulating nanocarriers-based therapeutics for targeting and treating ischemic stroke using lipid or polymeric-based materials. Nanoparticulate delivery systems are set as an effective platform for brain targeting as polymeric nanoparticles and polymeric micelles or nanocarriers based on lipids for preventing drug efflux to promote optimal therapeutic medication concentration in the brain-diseased site. In recent years, there has been a notable increase in research publications and ongoing investigations on the utilization of drug-loading nanocarriers for the treatment of diverse CNS diseases. This review comprehensively depicts these dangerous neurological disorders, drug targeting challenges to CNS, and potential contributions as novel intranasal nano-formulations are being used to treat and regulate a variety of neurological diseases.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"913-929"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progress in nanoparticulate-based intranasal delivery for treating of different central nervous system diseases.\",\"authors\":\"Eman A Bseiso, Nermin M Sheta, Khaled M Abdel-Haleem\",\"doi\":\"10.1080/10837450.2024.2409807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug administration to the central nervous system (CNS) has become a great obstacle because of several biological barriers, such as the blood-brain barrier, therefore, brain targeting insights are a light for scientists to move forward for treating neurogenerative diseases using advanced non-invasive methods. The current demand is to use a potential direct route as the nasal administration to transport drugs into the brain enhancing the BBB permeability and hence, increasing the bioavailability. Interestingly, recent techniques have been implanted in formulating nanocarriers-based therapeutics for targeting and treating ischemic stroke using lipid or polymeric-based materials. Nanoparticulate delivery systems are set as an effective platform for brain targeting as polymeric nanoparticles and polymeric micelles or nanocarriers based on lipids for preventing drug efflux to promote optimal therapeutic medication concentration in the brain-diseased site. In recent years, there has been a notable increase in research publications and ongoing investigations on the utilization of drug-loading nanocarriers for the treatment of diverse CNS diseases. This review comprehensively depicts these dangerous neurological disorders, drug targeting challenges to CNS, and potential contributions as novel intranasal nano-formulations are being used to treat and regulate a variety of neurological diseases.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"913-929\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2409807\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2409807","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Recent progress in nanoparticulate-based intranasal delivery for treating of different central nervous system diseases.
Drug administration to the central nervous system (CNS) has become a great obstacle because of several biological barriers, such as the blood-brain barrier, therefore, brain targeting insights are a light for scientists to move forward for treating neurogenerative diseases using advanced non-invasive methods. The current demand is to use a potential direct route as the nasal administration to transport drugs into the brain enhancing the BBB permeability and hence, increasing the bioavailability. Interestingly, recent techniques have been implanted in formulating nanocarriers-based therapeutics for targeting and treating ischemic stroke using lipid or polymeric-based materials. Nanoparticulate delivery systems are set as an effective platform for brain targeting as polymeric nanoparticles and polymeric micelles or nanocarriers based on lipids for preventing drug efflux to promote optimal therapeutic medication concentration in the brain-diseased site. In recent years, there has been a notable increase in research publications and ongoing investigations on the utilization of drug-loading nanocarriers for the treatment of diverse CNS diseases. This review comprehensively depicts these dangerous neurological disorders, drug targeting challenges to CNS, and potential contributions as novel intranasal nano-formulations are being used to treat and regulate a variety of neurological diseases.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.