C Draguet, P Populaire, M Chocan Vera, A Fredriksson, K Haustermans, J A Lee, A M Barragán-Montero, E Sterpin
{"title":"食管癌在线自适应质子治疗的自动治疗规划比较研究:可变形配准和深度学习规划工具的哪种组合效果最好?","authors":"C Draguet, P Populaire, M Chocan Vera, A Fredriksson, K Haustermans, J A Lee, A M Barragán-Montero, E Sterpin","doi":"10.1088/1361-6560/ad80f6","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>To demonstrate the feasibility of integrating fully-automated online adaptive proton therapy strategies (OAPT) within a commercially available treatment planning system and underscore what limits their clinical implementation. These strategies leverage existing deformable image registration (DIR) algorithms and state-of-the-art deep learning (DL) networks for organ segmentation and proton dose prediction.<i>Approach.</i>Four OAPT strategies featuring automatic segmentation and robust optimization were evaluated on a cohort of 17 patients, each undergoing a repeat CT scan. (1) DEF-INIT combines deformably registered contours with template-based optimization. (2) DL-INIT, (3) DL-DEF, and (4) DL-DL employ a nnU-Net DL network for organ segmentation and a controlling ROIs-guided DIR algorithm for internal clinical target volume (iCTV) segmentation. DL-INIT uses this segmentation alongside template-based optimization, DL-DEF integrates it with a dose-mimicking (DM) step using a reference deformed dose, and DL-DL merges it with DM on a reference DL-predicted dose. All strategies were evaluated on manual contours and contours used for optimization and compared with manually adapted plans. Key dose volume metrics like iCTV D98% are reported.<i>Main results.</i>iCTV D98% was comparable in manually adapted plans and for all strategies in nominal cases but dropped to 20 Gy in worst-case scenarios for a few patients per strategy, highlighting the need to correct segmentation errors in the target volume. Evaluations on optimization contours showed minimal relative error, with some outliers, particularly in template-based strategies (DEF-INIT and DL-INIT). DL-DEF achieves a good trade-off between speed and dosimetric quality, showing a passing rate (iCTV D98% > 94%) of 90% when evaluated against 2, 4 and 5 mm setup error and of 88% when evaluated against 7 mm setup error. While template-based methods are more rigid, DL-DEF and DL-DL have potential for further enhancements with proper DM algorithm tuning.<i>Significance.</i>Among investigated strategies, DL-DEF and DL-DL demonstrated promising within 10 min OAPT implementation results and significant potential for improvements.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study on automatic treatment planning for online adaptive proton therapy of esophageal cancer: which combination of deformable registration and deep learning planning tools performs the best?\",\"authors\":\"C Draguet, P Populaire, M Chocan Vera, A Fredriksson, K Haustermans, J A Lee, A M Barragán-Montero, E Sterpin\",\"doi\":\"10.1088/1361-6560/ad80f6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>To demonstrate the feasibility of integrating fully-automated online adaptive proton therapy strategies (OAPT) within a commercially available treatment planning system and underscore what limits their clinical implementation. These strategies leverage existing deformable image registration (DIR) algorithms and state-of-the-art deep learning (DL) networks for organ segmentation and proton dose prediction.<i>Approach.</i>Four OAPT strategies featuring automatic segmentation and robust optimization were evaluated on a cohort of 17 patients, each undergoing a repeat CT scan. (1) DEF-INIT combines deformably registered contours with template-based optimization. (2) DL-INIT, (3) DL-DEF, and (4) DL-DL employ a nnU-Net DL network for organ segmentation and a controlling ROIs-guided DIR algorithm for internal clinical target volume (iCTV) segmentation. DL-INIT uses this segmentation alongside template-based optimization, DL-DEF integrates it with a dose-mimicking (DM) step using a reference deformed dose, and DL-DL merges it with DM on a reference DL-predicted dose. All strategies were evaluated on manual contours and contours used for optimization and compared with manually adapted plans. Key dose volume metrics like iCTV D98% are reported.<i>Main results.</i>iCTV D98% was comparable in manually adapted plans and for all strategies in nominal cases but dropped to 20 Gy in worst-case scenarios for a few patients per strategy, highlighting the need to correct segmentation errors in the target volume. Evaluations on optimization contours showed minimal relative error, with some outliers, particularly in template-based strategies (DEF-INIT and DL-INIT). DL-DEF achieves a good trade-off between speed and dosimetric quality, showing a passing rate (iCTV D98% > 94%) of 90% when evaluated against 2, 4 and 5 mm setup error and of 88% when evaluated against 7 mm setup error. While template-based methods are more rigid, DL-DEF and DL-DL have potential for further enhancements with proper DM algorithm tuning.<i>Significance.</i>Among investigated strategies, DL-DEF and DL-DL demonstrated promising within 10 min OAPT implementation results and significant potential for improvements.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ad80f6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad80f6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A comparative study on automatic treatment planning for online adaptive proton therapy of esophageal cancer: which combination of deformable registration and deep learning planning tools performs the best?
Objective.To demonstrate the feasibility of integrating fully-automated online adaptive proton therapy strategies (OAPT) within a commercially available treatment planning system and underscore what limits their clinical implementation. These strategies leverage existing deformable image registration (DIR) algorithms and state-of-the-art deep learning (DL) networks for organ segmentation and proton dose prediction.Approach.Four OAPT strategies featuring automatic segmentation and robust optimization were evaluated on a cohort of 17 patients, each undergoing a repeat CT scan. (1) DEF-INIT combines deformably registered contours with template-based optimization. (2) DL-INIT, (3) DL-DEF, and (4) DL-DL employ a nnU-Net DL network for organ segmentation and a controlling ROIs-guided DIR algorithm for internal clinical target volume (iCTV) segmentation. DL-INIT uses this segmentation alongside template-based optimization, DL-DEF integrates it with a dose-mimicking (DM) step using a reference deformed dose, and DL-DL merges it with DM on a reference DL-predicted dose. All strategies were evaluated on manual contours and contours used for optimization and compared with manually adapted plans. Key dose volume metrics like iCTV D98% are reported.Main results.iCTV D98% was comparable in manually adapted plans and for all strategies in nominal cases but dropped to 20 Gy in worst-case scenarios for a few patients per strategy, highlighting the need to correct segmentation errors in the target volume. Evaluations on optimization contours showed minimal relative error, with some outliers, particularly in template-based strategies (DEF-INIT and DL-INIT). DL-DEF achieves a good trade-off between speed and dosimetric quality, showing a passing rate (iCTV D98% > 94%) of 90% when evaluated against 2, 4 and 5 mm setup error and of 88% when evaluated against 7 mm setup error. While template-based methods are more rigid, DL-DEF and DL-DL have potential for further enhancements with proper DM algorithm tuning.Significance.Among investigated strategies, DL-DEF and DL-DL demonstrated promising within 10 min OAPT implementation results and significant potential for improvements.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry