Stefanos Volianitis, Niels H Secher, Otto Clemmesen, Peter Ott, Henning Bay Nielsen
{"title":"肝硬化患者运动时的肝-细神经通量--一项试验研究。","authors":"Stefanos Volianitis, Niels H Secher, Otto Clemmesen, Peter Ott, Henning Bay Nielsen","doi":"10.14814/phy2.16162","DOIUrl":null,"url":null,"abstract":"<p><p>In cirrhotic patients, compromised hepatocyte function combined with disturbed hepatic blood flow could affect hepato-splanchnic substrate and metabolite fluxes and exacerbate fatigue during exercise. Eight cirrhotic patients performed incremental cycling trials (3 × 10 min; at light (28 [19-37] W; median with range), moderate (55 [41-69] W), and vigorous (76 [50-102] W) intensity). Heart rate increased from 68 (62-74) at rest to 95 (90-100), 114 (108-120), and 140 (134-146) beats/min (P < 0.05), respectively. The hepatic blood flow, as determined by constant infusion of indocyanine green with arterial and hepatic venous sampling, declined from 1.01 (0.75-1.27) to 0.69 (0.47-0.91) L/min (P < 0.05). Hepatic glucose output increased from 0.6 (0.5-0.7) to 1.5 (1.3-1.7) mmol/min, while arterial lactate increased from 0.8 (0.7-0.9) to 9.0 (8.1-9.9) mmol/L (P < 0.05) despite a rise in hepatic lactate uptake. Arterial ammonia increased in parallel to lactate from 47.3 (40.1-54.5) to 144.4 (120.5-168.3) μmol/L (P < 0.05), although hepatic ammonia uptake increased from 19.5 (12.4-26.6) to 69.5 (46.5-92.5) μmol/min (P < 0.05). Among the 14 amino acids measured, glutamate was released in the liver, while the uptake of free fatty acids decreased. During exercise at relatively low workloads, arterial lactate and ammonia levels were comparable to those seen in healthy subjects at higher workloads, while euglycemia was maintained due to sufficient hepatic glucose production. The accumulation of lactate and ammonia may contribute to exercise intolerance in patients with cirrhosis.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"12 18","pages":"e16162"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422660/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hepato-splanchnic fluxes during exercise in patients with cirrhosis-a pilot study.\",\"authors\":\"Stefanos Volianitis, Niels H Secher, Otto Clemmesen, Peter Ott, Henning Bay Nielsen\",\"doi\":\"10.14814/phy2.16162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In cirrhotic patients, compromised hepatocyte function combined with disturbed hepatic blood flow could affect hepato-splanchnic substrate and metabolite fluxes and exacerbate fatigue during exercise. Eight cirrhotic patients performed incremental cycling trials (3 × 10 min; at light (28 [19-37] W; median with range), moderate (55 [41-69] W), and vigorous (76 [50-102] W) intensity). Heart rate increased from 68 (62-74) at rest to 95 (90-100), 114 (108-120), and 140 (134-146) beats/min (P < 0.05), respectively. The hepatic blood flow, as determined by constant infusion of indocyanine green with arterial and hepatic venous sampling, declined from 1.01 (0.75-1.27) to 0.69 (0.47-0.91) L/min (P < 0.05). Hepatic glucose output increased from 0.6 (0.5-0.7) to 1.5 (1.3-1.7) mmol/min, while arterial lactate increased from 0.8 (0.7-0.9) to 9.0 (8.1-9.9) mmol/L (P < 0.05) despite a rise in hepatic lactate uptake. Arterial ammonia increased in parallel to lactate from 47.3 (40.1-54.5) to 144.4 (120.5-168.3) μmol/L (P < 0.05), although hepatic ammonia uptake increased from 19.5 (12.4-26.6) to 69.5 (46.5-92.5) μmol/min (P < 0.05). Among the 14 amino acids measured, glutamate was released in the liver, while the uptake of free fatty acids decreased. During exercise at relatively low workloads, arterial lactate and ammonia levels were comparable to those seen in healthy subjects at higher workloads, while euglycemia was maintained due to sufficient hepatic glucose production. The accumulation of lactate and ammonia may contribute to exercise intolerance in patients with cirrhosis.</p>\",\"PeriodicalId\":20083,\"journal\":{\"name\":\"Physiological Reports\",\"volume\":\"12 18\",\"pages\":\"e16162\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422660/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14814/phy2.16162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.16162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Hepato-splanchnic fluxes during exercise in patients with cirrhosis-a pilot study.
In cirrhotic patients, compromised hepatocyte function combined with disturbed hepatic blood flow could affect hepato-splanchnic substrate and metabolite fluxes and exacerbate fatigue during exercise. Eight cirrhotic patients performed incremental cycling trials (3 × 10 min; at light (28 [19-37] W; median with range), moderate (55 [41-69] W), and vigorous (76 [50-102] W) intensity). Heart rate increased from 68 (62-74) at rest to 95 (90-100), 114 (108-120), and 140 (134-146) beats/min (P < 0.05), respectively. The hepatic blood flow, as determined by constant infusion of indocyanine green with arterial and hepatic venous sampling, declined from 1.01 (0.75-1.27) to 0.69 (0.47-0.91) L/min (P < 0.05). Hepatic glucose output increased from 0.6 (0.5-0.7) to 1.5 (1.3-1.7) mmol/min, while arterial lactate increased from 0.8 (0.7-0.9) to 9.0 (8.1-9.9) mmol/L (P < 0.05) despite a rise in hepatic lactate uptake. Arterial ammonia increased in parallel to lactate from 47.3 (40.1-54.5) to 144.4 (120.5-168.3) μmol/L (P < 0.05), although hepatic ammonia uptake increased from 19.5 (12.4-26.6) to 69.5 (46.5-92.5) μmol/min (P < 0.05). Among the 14 amino acids measured, glutamate was released in the liver, while the uptake of free fatty acids decreased. During exercise at relatively low workloads, arterial lactate and ammonia levels were comparable to those seen in healthy subjects at higher workloads, while euglycemia was maintained due to sufficient hepatic glucose production. The accumulation of lactate and ammonia may contribute to exercise intolerance in patients with cirrhosis.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.