螺旋藻蛋白提取物功能化银纳米粒子对大鼠的影响

IF 4.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Pharmaceuticals Pub Date : 2024-09-22 DOI:10.3390/ph17091247
Ludmila Rudi, Inga Zinicovscaia, Liliana Cepoi, Tatiana Chiriac, Dmitrii Grozdov, Alexandra Kravtsova
{"title":"螺旋藻蛋白提取物功能化银纳米粒子对大鼠的影响","authors":"Ludmila Rudi, Inga Zinicovscaia, Liliana Cepoi, Tatiana Chiriac, Dmitrii Grozdov, Alexandra Kravtsova","doi":"10.3390/ph17091247","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: This study investigates the biocompatibility and physiological impacts of silver nanoparticles (AgNPs) functionalized with Spirulina protein extract (SPE) on laboratory rats. The objective was to assess and compare the systemic distribution, organ accumulation, and changes in hematological and biochemical parameters between biofunctionalized and non-functionalized silver nanoparticles. <b>Methods:</b> AgNPs were functionalized with SPE. Adult Wistar rats were administered these nanoparticles to assess their distribution across various organs using ICP-MS analysis. Hematological and biochemical markers were measured to evaluate systemic effects. <b>Results</b>: Functionalized silver nanoparticles demonstrated preferential accumulation in the brain, liver, and testicles, with significant clearance observed post-administration. The persistence of AgNPs SPE in reproductive organs was established. Hematological analysis revealed moderate changes, suggesting mild immune activation. Biochemical tests indicated transient increases in liver enzymes, signaling reversible hepatic stress. <b>Conclusions</b>: The biofunctionalization of AgNPs with Spirulina protein extract modifies the nanoparticles' systemic behavior and organ distribution, enhancing their biocompatibility while inducing minimal physiological stress. These findings support the potential of Spirulina-based coatings to mitigate the toxicity and enhance the therapeutic efficacy of nanomedical agents.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435341/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Impact of Silver Nanoparticles Functionalized with Spirulina Protein Extract on Rats.\",\"authors\":\"Ludmila Rudi, Inga Zinicovscaia, Liliana Cepoi, Tatiana Chiriac, Dmitrii Grozdov, Alexandra Kravtsova\",\"doi\":\"10.3390/ph17091247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: This study investigates the biocompatibility and physiological impacts of silver nanoparticles (AgNPs) functionalized with Spirulina protein extract (SPE) on laboratory rats. The objective was to assess and compare the systemic distribution, organ accumulation, and changes in hematological and biochemical parameters between biofunctionalized and non-functionalized silver nanoparticles. <b>Methods:</b> AgNPs were functionalized with SPE. Adult Wistar rats were administered these nanoparticles to assess their distribution across various organs using ICP-MS analysis. Hematological and biochemical markers were measured to evaluate systemic effects. <b>Results</b>: Functionalized silver nanoparticles demonstrated preferential accumulation in the brain, liver, and testicles, with significant clearance observed post-administration. The persistence of AgNPs SPE in reproductive organs was established. Hematological analysis revealed moderate changes, suggesting mild immune activation. Biochemical tests indicated transient increases in liver enzymes, signaling reversible hepatic stress. <b>Conclusions</b>: The biofunctionalization of AgNPs with Spirulina protein extract modifies the nanoparticles' systemic behavior and organ distribution, enhancing their biocompatibility while inducing minimal physiological stress. These findings support the potential of Spirulina-based coatings to mitigate the toxicity and enhance the therapeutic efficacy of nanomedical agents.</p>\",\"PeriodicalId\":20198,\"journal\":{\"name\":\"Pharmaceuticals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435341/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/ph17091247\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph17091247","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景/目的:本研究调查了用螺旋藻蛋白提取物(SPE)功能化的银纳米粒子(AgNPs)对实验鼠的生物相容性和生理影响。目的是评估和比较生物功能化和非功能化银纳米粒子的全身分布、器官蓄积以及血液和生化指标的变化。研究方法用 SPE 对 AgNPs 进行功能化。给成年 Wistar 大鼠注射这些纳米颗粒,使用 ICP-MS 分析评估它们在各器官中的分布情况。测量血液学和生化指标以评估系统效应。结果功能化银纳米粒子优先在大脑、肝脏和睾丸中蓄积,给药后观察到明显的清除现象。AgNPs SPE 在生殖器官中的持久性已得到证实。血液学分析显示变化不大,表明存在轻度免疫激活。生化测试表明肝酶短暂升高,表明肝脏压力是可逆的。结论螺旋藻蛋白提取物对 AgNPs 的生物功能化改变了纳米粒子的系统行为和器官分布,增强了其生物相容性,同时将生理压力降至最低。这些发现支持了螺旋藻涂层在减轻纳米药物毒性和提高治疗效果方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Impact of Silver Nanoparticles Functionalized with Spirulina Protein Extract on Rats.

Background/Objectives: This study investigates the biocompatibility and physiological impacts of silver nanoparticles (AgNPs) functionalized with Spirulina protein extract (SPE) on laboratory rats. The objective was to assess and compare the systemic distribution, organ accumulation, and changes in hematological and biochemical parameters between biofunctionalized and non-functionalized silver nanoparticles. Methods: AgNPs were functionalized with SPE. Adult Wistar rats were administered these nanoparticles to assess their distribution across various organs using ICP-MS analysis. Hematological and biochemical markers were measured to evaluate systemic effects. Results: Functionalized silver nanoparticles demonstrated preferential accumulation in the brain, liver, and testicles, with significant clearance observed post-administration. The persistence of AgNPs SPE in reproductive organs was established. Hematological analysis revealed moderate changes, suggesting mild immune activation. Biochemical tests indicated transient increases in liver enzymes, signaling reversible hepatic stress. Conclusions: The biofunctionalization of AgNPs with Spirulina protein extract modifies the nanoparticles' systemic behavior and organ distribution, enhancing their biocompatibility while inducing minimal physiological stress. These findings support the potential of Spirulina-based coatings to mitigate the toxicity and enhance the therapeutic efficacy of nanomedical agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceuticals
Pharmaceuticals Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍: Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.
期刊最新文献
Assessing Cardiovascular Target Attainment in Type 2 Diabetes Mellitus Patients in Tertiary Diabetes Center in Romania. Cancer Metastases to the Liver: Mechanisms of Tumor Cell Colonization. Comparative Assessment of Beeswax Alcohol and Coenzyme Q10 (CoQ10) to Prevent Liver Aging, Organ Damage, and Oxidative Stress in Hyperlipidemic Zebrafish Exposed to D-Galactose: A 12-Week Dietary Intervention. The Anti-Vitiligo Effects of Feshurin In Vitro from Ferula samarcandica and the Mechanism of Action. Real-Time Fluorescence Monitoring System for Optimal Light Dosage in Cancer Photoimmunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1