阿尔茨海默病遗传风险中的抑制性 P300 子过程和神经补偿:时空主成分分析案例。

IF 2.9 2区 心理学 Q2 NEUROSCIENCES Psychophysiology Pub Date : 2024-09-30 DOI:10.1111/psyp.14693
Elizabeth R Paitel, Kristy A Nielson
{"title":"阿尔茨海默病遗传风险中的抑制性 P300 子过程和神经补偿:时空主成分分析案例。","authors":"Elizabeth R Paitel, Kristy A Nielson","doi":"10.1111/psyp.14693","DOIUrl":null,"url":null,"abstract":"<p><p>The P300 event-related potential (ERP) is widely investigated in cognitive neuroscience, including related to aging, with smaller amplitudes and delayed latency consistently reported in Alzheimer's disease (AD). Given that AD-related neurological changes begin years before symptom onset, ERPs in asymptomatic elders with AD risk may characterize early changes. ERPs are seldom studied in this population. Yet, healthy carriers of apolipoprotein-E (APOE) ε4 have evidenced delayed P300 latencies, while P300 amplitude differences are seldom found. However, despite its frequent study, the specific cognitive processes reflected by P300 remain unclear. We propose that these challenges are due to the relatively long P300 window, which likely encompasses multiple underlying subprocesses that overlap in time. Temporal-spatial principal component analysis (tsPCA) maintains the high temporal resolution of EEG and is better suited to isolate processes that overlap in time. Thus, we interrogated APOE ε4 differences in P300 activity during successful stop-signal inhibitory control in healthy, cognitively intact older adults (25 ε4-, 20 ε4+), using both conventional ERP metrics (i.e., mean and peak amplitude) and P300 tsPCA factors. P300 amplitudes did not differ by ε4 using conventional metrics. tsPCA revealed two P300 factors in each ε4 group: first, a Posterior P300 (attention allocation) factor, and second, a relatively Anterior P300 (performance monitoring, evaluating, and updating) factor. tsPCA uniquely revealed greater activity in ε4+ vs. ε4- in Anterior P300. ε4 groups had comparable task performance, suggesting that greater P300 activity in ε4+ likely reflects neural compensation for ε4-related deficits, thereby enabling the maintenance of good task performance.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibitory P300 subprocesses and neural compensation in genetic risk for Alzheimer's disease: The case for temporal-spatial principal component analysis.\",\"authors\":\"Elizabeth R Paitel, Kristy A Nielson\",\"doi\":\"10.1111/psyp.14693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The P300 event-related potential (ERP) is widely investigated in cognitive neuroscience, including related to aging, with smaller amplitudes and delayed latency consistently reported in Alzheimer's disease (AD). Given that AD-related neurological changes begin years before symptom onset, ERPs in asymptomatic elders with AD risk may characterize early changes. ERPs are seldom studied in this population. Yet, healthy carriers of apolipoprotein-E (APOE) ε4 have evidenced delayed P300 latencies, while P300 amplitude differences are seldom found. However, despite its frequent study, the specific cognitive processes reflected by P300 remain unclear. We propose that these challenges are due to the relatively long P300 window, which likely encompasses multiple underlying subprocesses that overlap in time. Temporal-spatial principal component analysis (tsPCA) maintains the high temporal resolution of EEG and is better suited to isolate processes that overlap in time. Thus, we interrogated APOE ε4 differences in P300 activity during successful stop-signal inhibitory control in healthy, cognitively intact older adults (25 ε4-, 20 ε4+), using both conventional ERP metrics (i.e., mean and peak amplitude) and P300 tsPCA factors. P300 amplitudes did not differ by ε4 using conventional metrics. tsPCA revealed two P300 factors in each ε4 group: first, a Posterior P300 (attention allocation) factor, and second, a relatively Anterior P300 (performance monitoring, evaluating, and updating) factor. tsPCA uniquely revealed greater activity in ε4+ vs. ε4- in Anterior P300. ε4 groups had comparable task performance, suggesting that greater P300 activity in ε4+ likely reflects neural compensation for ε4-related deficits, thereby enabling the maintenance of good task performance.</p>\",\"PeriodicalId\":20913,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14693\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14693","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

P300 事件相关电位(ERP)在认知神经科学中被广泛研究,包括与衰老相关的研究。鉴于与阿尔茨海默病相关的神经系统变化始于症状出现前数年,因此对无症状且有阿尔茨海默病风险的老年人进行ERP分析可描述早期变化的特征。对这一人群的ERP很少进行研究。然而,健康的脂蛋白-E(APOE)ε4携带者却表现出延迟的P300潜伏期,而P300振幅差异却很少被发现。然而,尽管对 P300 进行了频繁的研究,但其反映的具体认知过程仍不清楚。我们认为这些挑战是由于 P300 窗口相对较长,可能包含多个在时间上重叠的潜在子过程。时空主成分分析(tsPCA)保持了脑电图的高时间分辨率,更适合分离时间上重叠的过程。因此,我们使用传统的 ERP 指标(即平均振幅和峰值振幅)和 P300 tsPCA 因子,研究了健康、认知完整的老年人(25 ε4-, 20 ε4+)在成功的停止信号抑制控制过程中 P300 活动的 APOE ε4 差异。在每个 ε4 组中,tsPCA 发现了两个 P300 因子:第一个是后部 P300(注意力分配)因子,第二个是相对前部的 P300(表现监测、评估和更新)因子。ε4组的任务表现相当,这表明ε4+中更大的P300活动可能反映了对ε4相关缺陷的神经补偿,从而使良好的任务表现得以维持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inhibitory P300 subprocesses and neural compensation in genetic risk for Alzheimer's disease: The case for temporal-spatial principal component analysis.

The P300 event-related potential (ERP) is widely investigated in cognitive neuroscience, including related to aging, with smaller amplitudes and delayed latency consistently reported in Alzheimer's disease (AD). Given that AD-related neurological changes begin years before symptom onset, ERPs in asymptomatic elders with AD risk may characterize early changes. ERPs are seldom studied in this population. Yet, healthy carriers of apolipoprotein-E (APOE) ε4 have evidenced delayed P300 latencies, while P300 amplitude differences are seldom found. However, despite its frequent study, the specific cognitive processes reflected by P300 remain unclear. We propose that these challenges are due to the relatively long P300 window, which likely encompasses multiple underlying subprocesses that overlap in time. Temporal-spatial principal component analysis (tsPCA) maintains the high temporal resolution of EEG and is better suited to isolate processes that overlap in time. Thus, we interrogated APOE ε4 differences in P300 activity during successful stop-signal inhibitory control in healthy, cognitively intact older adults (25 ε4-, 20 ε4+), using both conventional ERP metrics (i.e., mean and peak amplitude) and P300 tsPCA factors. P300 amplitudes did not differ by ε4 using conventional metrics. tsPCA revealed two P300 factors in each ε4 group: first, a Posterior P300 (attention allocation) factor, and second, a relatively Anterior P300 (performance monitoring, evaluating, and updating) factor. tsPCA uniquely revealed greater activity in ε4+ vs. ε4- in Anterior P300. ε4 groups had comparable task performance, suggesting that greater P300 activity in ε4+ likely reflects neural compensation for ε4-related deficits, thereby enabling the maintenance of good task performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychophysiology
Psychophysiology 医学-神经科学
CiteScore
6.80
自引率
8.10%
发文量
225
审稿时长
2 months
期刊介绍: Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.
期刊最新文献
Patterns of adaptation to stress cardiovascular responses in smokers during ad libitum smoking and withdrawal. The capacity limitations of multiple-template visual search during task preparation and target selection. The immediate and lasting effects of imagery rescripting and their associations with imagery tendency in young adults with childhood maltreatment history: An ERP study. Cortical and subcortical brain networks predict prevailing heart rate. Adversity and error-monitoring: Effects of emotional context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1