Zu-Gui Tang, Tie-Mei Chen, Yi Lu, Zhe Wang, Xi-Cheng Wang, Yi Kong
{"title":"含有吉西他滨的人骨髓间充质干细胞衍生外泌体通过增强细胞凋亡抑制胰腺癌细胞增殖。","authors":"Zu-Gui Tang, Tie-Mei Chen, Yi Lu, Zhe Wang, Xi-Cheng Wang, Yi Kong","doi":"10.4251/wjgo.v16.i9.4006","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pancreatic cancer remains one of the most lethal malignancies, and has limited effective treatment. Gemcitabine (GEM), a chemotherapeutic agent, is commonly used for clinical treatment of pancreatic cancer, but it has characteristics of low drug delivery efficiency and significant side effects. The study tested the hypothesis that human bone marrow mesenchymal stem cell (MSC)-derived exosomes loaded with GEM (Exo-GEM) would have a higher cytotoxicity against human pancreatic cancer cells by enhancing their apoptosis.</p><p><strong>Aim: </strong>To investigate the cytotoxicity of MSC-derived Exo-GEM against pancreatic cancer cells <i>in vitro</i>.</p><p><strong>Methods: </strong>Exosomes were isolated from MSCs and characterized by transmission electron microscopy and nanoparticle tracking analysis. Exo-GEM through electroporation, sonication, or incubation, and the loading efficiency was evaluated. The cytotoxicity of Exo-GEM or GEM alone against human pancreatic cancer Panc-1 and MiaPaca-2 cells was assessed by MTT and flow cytometry assays.</p><p><strong>Results: </strong>The isolated exosomes had an average size of 76.7 nm. The encapsulation efficacy and loading efficiency of GEM by electroporation and sonication were similar and significantly better than incubation. The cytotoxicity of Exo-GEM against pancreatic cancer cells was stronger than free GEM and treatment with 0.02 μM Exo-GEM significantly reduced the viability of both Panc-1 and MiaPaca-2 cells. Moreover, Exo-GEM enhanced the frequency of GEM-induced apoptosis in both cell lines.</p><p><strong>Conclusion: </strong>Human bone marrow MSC-derived Exo-GEM have a potent cytotoxicity against human pancreatic cancer cells by enhancing their apoptosis, offering a promising drug delivery system for improving therapeutic outcomes.</p>","PeriodicalId":23762,"journal":{"name":"World Journal of Gastrointestinal Oncology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438785/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human bone marrow mesenchymal stem cell-derived exosomes loaded with gemcitabine inhibit pancreatic cancer cell proliferation by enhancing apoptosis.\",\"authors\":\"Zu-Gui Tang, Tie-Mei Chen, Yi Lu, Zhe Wang, Xi-Cheng Wang, Yi Kong\",\"doi\":\"10.4251/wjgo.v16.i9.4006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pancreatic cancer remains one of the most lethal malignancies, and has limited effective treatment. Gemcitabine (GEM), a chemotherapeutic agent, is commonly used for clinical treatment of pancreatic cancer, but it has characteristics of low drug delivery efficiency and significant side effects. The study tested the hypothesis that human bone marrow mesenchymal stem cell (MSC)-derived exosomes loaded with GEM (Exo-GEM) would have a higher cytotoxicity against human pancreatic cancer cells by enhancing their apoptosis.</p><p><strong>Aim: </strong>To investigate the cytotoxicity of MSC-derived Exo-GEM against pancreatic cancer cells <i>in vitro</i>.</p><p><strong>Methods: </strong>Exosomes were isolated from MSCs and characterized by transmission electron microscopy and nanoparticle tracking analysis. Exo-GEM through electroporation, sonication, or incubation, and the loading efficiency was evaluated. The cytotoxicity of Exo-GEM or GEM alone against human pancreatic cancer Panc-1 and MiaPaca-2 cells was assessed by MTT and flow cytometry assays.</p><p><strong>Results: </strong>The isolated exosomes had an average size of 76.7 nm. The encapsulation efficacy and loading efficiency of GEM by electroporation and sonication were similar and significantly better than incubation. The cytotoxicity of Exo-GEM against pancreatic cancer cells was stronger than free GEM and treatment with 0.02 μM Exo-GEM significantly reduced the viability of both Panc-1 and MiaPaca-2 cells. Moreover, Exo-GEM enhanced the frequency of GEM-induced apoptosis in both cell lines.</p><p><strong>Conclusion: </strong>Human bone marrow MSC-derived Exo-GEM have a potent cytotoxicity against human pancreatic cancer cells by enhancing their apoptosis, offering a promising drug delivery system for improving therapeutic outcomes.</p>\",\"PeriodicalId\":23762,\"journal\":{\"name\":\"World Journal of Gastrointestinal Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438785/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Gastrointestinal Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4251/wjgo.v16.i9.4006\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Gastrointestinal Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4251/wjgo.v16.i9.4006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Human bone marrow mesenchymal stem cell-derived exosomes loaded with gemcitabine inhibit pancreatic cancer cell proliferation by enhancing apoptosis.
Background: Pancreatic cancer remains one of the most lethal malignancies, and has limited effective treatment. Gemcitabine (GEM), a chemotherapeutic agent, is commonly used for clinical treatment of pancreatic cancer, but it has characteristics of low drug delivery efficiency and significant side effects. The study tested the hypothesis that human bone marrow mesenchymal stem cell (MSC)-derived exosomes loaded with GEM (Exo-GEM) would have a higher cytotoxicity against human pancreatic cancer cells by enhancing their apoptosis.
Aim: To investigate the cytotoxicity of MSC-derived Exo-GEM against pancreatic cancer cells in vitro.
Methods: Exosomes were isolated from MSCs and characterized by transmission electron microscopy and nanoparticle tracking analysis. Exo-GEM through electroporation, sonication, or incubation, and the loading efficiency was evaluated. The cytotoxicity of Exo-GEM or GEM alone against human pancreatic cancer Panc-1 and MiaPaca-2 cells was assessed by MTT and flow cytometry assays.
Results: The isolated exosomes had an average size of 76.7 nm. The encapsulation efficacy and loading efficiency of GEM by electroporation and sonication were similar and significantly better than incubation. The cytotoxicity of Exo-GEM against pancreatic cancer cells was stronger than free GEM and treatment with 0.02 μM Exo-GEM significantly reduced the viability of both Panc-1 and MiaPaca-2 cells. Moreover, Exo-GEM enhanced the frequency of GEM-induced apoptosis in both cell lines.
Conclusion: Human bone marrow MSC-derived Exo-GEM have a potent cytotoxicity against human pancreatic cancer cells by enhancing their apoptosis, offering a promising drug delivery system for improving therapeutic outcomes.
期刊介绍:
The World Journal of Gastrointestinal Oncology (WJGO) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of gastrointestinal oncology.