在乳房 X 射线照相术中使用人工智能诊断近端对侧乳腺癌。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Journal of Imaging Pub Date : 2024-08-28 DOI:10.3390/jimaging10090211
Mio Adachi, Tomoyuki Fujioka, Toshiyuki Ishiba, Miyako Nara, Sakiko Maruya, Kumiko Hayashi, Yuichi Kumaki, Emi Yamaga, Leona Katsuta, Du Hao, Mikael Hartman, Feng Mengling, Goshi Oda, Kazunori Kubota, Ukihide Tateishi
{"title":"在乳房 X 射线照相术中使用人工智能诊断近端对侧乳腺癌。","authors":"Mio Adachi, Tomoyuki Fujioka, Toshiyuki Ishiba, Miyako Nara, Sakiko Maruya, Kumiko Hayashi, Yuichi Kumaki, Emi Yamaga, Leona Katsuta, Du Hao, Mikael Hartman, Feng Mengling, Goshi Oda, Kazunori Kubota, Ukihide Tateishi","doi":"10.3390/jimaging10090211","DOIUrl":null,"url":null,"abstract":"<p><p>Although several studies have been conducted on artificial intelligence (AI) use in mammography (MG), there is still a paucity of research on the diagnosis of metachronous bilateral breast cancer (BC), which is typically more challenging to diagnose. This study aimed to determine whether AI could enhance BC detection, achieving earlier or more accurate diagnoses than radiologists in cases of metachronous contralateral BC. We included patients who underwent unilateral BC surgery and subsequently developed contralateral BC. This retrospective study evaluated the AI-supported MG diagnostic system called FxMammo™. We evaluated the capability of FxMammo™ (FathomX Pte Ltd., Singapore) to diagnose BC more accurately or earlier than radiologists' assessments. This evaluation was supplemented by reviewing MG readings made by radiologists. Out of 1101 patients who underwent surgery, 10 who had initially undergone a partial mastectomy and later developed contralateral BC were analyzed. The AI system identified malignancies in six cases (60%), while radiologists identified five cases (50%). Notably, two cases (20%) were diagnosed solely by the AI system. Additionally, for these cases, the AI system had identified malignancies a year before the conventional diagnosis. This study highlights the AI system's effectiveness in diagnosing metachronous contralateral BC via MG. In some cases, the AI system consistently diagnosed cancer earlier than radiological assessments.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432939/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI Use in Mammography for Diagnosing Metachronous Contralateral Breast Cancer.\",\"authors\":\"Mio Adachi, Tomoyuki Fujioka, Toshiyuki Ishiba, Miyako Nara, Sakiko Maruya, Kumiko Hayashi, Yuichi Kumaki, Emi Yamaga, Leona Katsuta, Du Hao, Mikael Hartman, Feng Mengling, Goshi Oda, Kazunori Kubota, Ukihide Tateishi\",\"doi\":\"10.3390/jimaging10090211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although several studies have been conducted on artificial intelligence (AI) use in mammography (MG), there is still a paucity of research on the diagnosis of metachronous bilateral breast cancer (BC), which is typically more challenging to diagnose. This study aimed to determine whether AI could enhance BC detection, achieving earlier or more accurate diagnoses than radiologists in cases of metachronous contralateral BC. We included patients who underwent unilateral BC surgery and subsequently developed contralateral BC. This retrospective study evaluated the AI-supported MG diagnostic system called FxMammo™. We evaluated the capability of FxMammo™ (FathomX Pte Ltd., Singapore) to diagnose BC more accurately or earlier than radiologists' assessments. This evaluation was supplemented by reviewing MG readings made by radiologists. Out of 1101 patients who underwent surgery, 10 who had initially undergone a partial mastectomy and later developed contralateral BC were analyzed. The AI system identified malignancies in six cases (60%), while radiologists identified five cases (50%). Notably, two cases (20%) were diagnosed solely by the AI system. Additionally, for these cases, the AI system had identified malignancies a year before the conventional diagnosis. This study highlights the AI system's effectiveness in diagnosing metachronous contralateral BC via MG. In some cases, the AI system consistently diagnosed cancer earlier than radiological assessments.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"10 9\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432939/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging10090211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10090211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然已有多项关于人工智能(AI)在乳腺 X 射线摄影(MG)中应用的研究,但关于近端双侧乳腺癌(BC)诊断的研究仍然很少,而这种癌症的诊断通常更具挑战性。本研究旨在确定人工智能是否能提高双侧乳腺癌的检测率,在对侧近端乳腺癌病例中实现比放射科医生更早或更准确的诊断。我们纳入了接受单侧 BC 手术并随后发展为对侧 BC 的患者。这项回顾性研究评估了人工智能支持的 MG 诊断系统 FxMammo™。我们评估了 FxMammo™(新加坡 FathomX 私人有限公司)比放射科医生的评估更准确或更早诊断出 BC 的能力。这项评估通过审查放射科医生的 MG 读数进行补充。在接受手术的 1101 名患者中,有 10 名患者最初接受了乳房部分切除术,后来又出现了对侧乳腺癌。人工智能系统识别出六例(60%)恶性肿瘤,而放射科医生识别出五例(50%)。值得注意的是,有两个病例(20%)仅由人工智能系统确诊。此外,在这些病例中,人工智能系统比常规诊断提前一年发现了恶性肿瘤。这项研究强调了人工智能系统通过 MG 诊断对侧晚期 BC 的有效性。在某些病例中,人工智能系统对癌症的诊断始终早于放射评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI Use in Mammography for Diagnosing Metachronous Contralateral Breast Cancer.

Although several studies have been conducted on artificial intelligence (AI) use in mammography (MG), there is still a paucity of research on the diagnosis of metachronous bilateral breast cancer (BC), which is typically more challenging to diagnose. This study aimed to determine whether AI could enhance BC detection, achieving earlier or more accurate diagnoses than radiologists in cases of metachronous contralateral BC. We included patients who underwent unilateral BC surgery and subsequently developed contralateral BC. This retrospective study evaluated the AI-supported MG diagnostic system called FxMammo™. We evaluated the capability of FxMammo™ (FathomX Pte Ltd., Singapore) to diagnose BC more accurately or earlier than radiologists' assessments. This evaluation was supplemented by reviewing MG readings made by radiologists. Out of 1101 patients who underwent surgery, 10 who had initially undergone a partial mastectomy and later developed contralateral BC were analyzed. The AI system identified malignancies in six cases (60%), while radiologists identified five cases (50%). Notably, two cases (20%) were diagnosed solely by the AI system. Additionally, for these cases, the AI system had identified malignancies a year before the conventional diagnosis. This study highlights the AI system's effectiveness in diagnosing metachronous contralateral BC via MG. In some cases, the AI system consistently diagnosed cancer earlier than radiological assessments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
期刊最新文献
A Specialized Pipeline for Efficient and Reliable 3D Semantic Model Reconstruction of Buildings from Indoor Point Clouds. Design and Use of a Custom Phantom for Regular Tests of Radiography Apparatus: A Feasibility Study. Differentiation of Benign and Malignant Neck Neoplastic Lesions Using Diffusion-Weighted Magnetic Resonance Imaging. Investigating the Sim-to-Real Generalizability of Deep Learning Object Detection Models. Quantitative Comparison of Color-Coded Parametric Imaging Technologies Based on Digital Subtraction and Digital Variance Angiography: A Retrospective Observational Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1