多轴疲劳寿命预测新方法:具有多深度的多维多尺度复合神经网络

IF 4.7 2区 工程技术 Q1 MECHANICS Engineering Fracture Mechanics Pub Date : 2024-09-24 DOI:10.1016/j.engfracmech.2024.110501
{"title":"多轴疲劳寿命预测新方法:具有多深度的多维多尺度复合神经网络","authors":"","doi":"10.1016/j.engfracmech.2024.110501","DOIUrl":null,"url":null,"abstract":"<div><div>Many multiaxial fatigue life prediction methods tend to increase additional parameters and model depth as the complexity of the loading path increases. This leads to issues such as poor model robustness, limited flexibility, and single-dimensional approaches. In this study, a multi-dimensional multi-scale composite neural network with multi-depth is proposed to address these challenges and enhance prediction accuracy. Initially, physical and sensitive features serve as input data for the proposed model, to enhance the richness of input features. Subsequently, a multi-dimensional feature extraction module is deployed to extract feature information from the composite data. To process these features, an improved multi-domain query cascaded transformer network (IMQCT) is employed as the feature processing module of the proposed model. The proposed model is verified to have better prediction accuracy and extrapolation capability by using experimental data from nine materials and comparing its performance with six machine learning models.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach to multiaxial fatigue life prediction: A multi-dimensional multi-scale composite neural network with multi-depth\",\"authors\":\"\",\"doi\":\"10.1016/j.engfracmech.2024.110501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many multiaxial fatigue life prediction methods tend to increase additional parameters and model depth as the complexity of the loading path increases. This leads to issues such as poor model robustness, limited flexibility, and single-dimensional approaches. In this study, a multi-dimensional multi-scale composite neural network with multi-depth is proposed to address these challenges and enhance prediction accuracy. Initially, physical and sensitive features serve as input data for the proposed model, to enhance the richness of input features. Subsequently, a multi-dimensional feature extraction module is deployed to extract feature information from the composite data. To process these features, an improved multi-domain query cascaded transformer network (IMQCT) is employed as the feature processing module of the proposed model. The proposed model is verified to have better prediction accuracy and extrapolation capability by using experimental data from nine materials and comparing its performance with six machine learning models.</div></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794424006647\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424006647","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

随着加载路径复杂性的增加,许多多轴疲劳寿命预测方法倾向于增加附加参数和模型深度。这就导致了模型鲁棒性差、灵活性有限、方法单一等问题。本研究提出了一种具有多深度的多维多尺度复合神经网络,以应对这些挑战并提高预测精度。首先,物理和敏感特征作为拟议模型的输入数据,以增强输入特征的丰富性。随后,部署一个多维特征提取模块,从复合数据中提取特征信息。为了处理这些特征,拟议模型采用了改进的多域查询级联变换器网络(IMQCT)作为特征处理模块。通过使用九种材料的实验数据以及与六种机器学习模型的性能比较,验证了所提出的模型具有更好的预测准确性和外推能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new approach to multiaxial fatigue life prediction: A multi-dimensional multi-scale composite neural network with multi-depth
Many multiaxial fatigue life prediction methods tend to increase additional parameters and model depth as the complexity of the loading path increases. This leads to issues such as poor model robustness, limited flexibility, and single-dimensional approaches. In this study, a multi-dimensional multi-scale composite neural network with multi-depth is proposed to address these challenges and enhance prediction accuracy. Initially, physical and sensitive features serve as input data for the proposed model, to enhance the richness of input features. Subsequently, a multi-dimensional feature extraction module is deployed to extract feature information from the composite data. To process these features, an improved multi-domain query cascaded transformer network (IMQCT) is employed as the feature processing module of the proposed model. The proposed model is verified to have better prediction accuracy and extrapolation capability by using experimental data from nine materials and comparing its performance with six machine learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
期刊最新文献
Editorial Board A novel experimental method for studying rock collision Crystal plasticity-driven evaluation of notch fatigue behavior in IN718 Research on the microstructure, mechanical and fatigue performance of 7075/6061 dissimilar aluminum alloy fusion welding joint treated by nanoparticle and post-weld heat treatment Strain-gradient and damage failure behavior in particle reinforced heterogeneous matrix composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1