Grant M. Hanada , Marija Kalabic , Daniel P. Ferris
{"title":"带有视觉搜索任务的室内跑步机行走和室外行走的移动脑体成像数据集","authors":"Grant M. Hanada , Marija Kalabic , Daniel P. Ferris","doi":"10.1016/j.dib.2024.110968","DOIUrl":null,"url":null,"abstract":"<div><div>To fully understand brain processes in the real world, it is necessary to record and quantitatively analyse brain processes during real world human experiences. Mobile electroencephalography (EEG) and physiological data sensors provide new opportunities for studying humans outside of the laboratory. The purpose of this study was to document data from high-density EEG and mobile physiological sensors while humans performed a visual search task both on a treadmill in a laboratory setting and overground in a natural outdoor setting. The data set includes 49 young, healthy participants on an outdoor arboretum path and on a treadmill in a laboratory with a large virtual reality screen. The data provide a valuable research tool for scientists interested in signal processing, electrocortical brain processes, mobile brain imaging, and brain-computer interfaces based on mobile EEG. Given the comparison data between laboratory and real world conditions, researchers can test the viability of new processing algorithms across conditions or investigate changes in electrocortical activity related to behavioural dynamics coded into the data.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobile brain–body imaging data set of indoor treadmill walking and outdoor walking with a visual search task\",\"authors\":\"Grant M. Hanada , Marija Kalabic , Daniel P. Ferris\",\"doi\":\"10.1016/j.dib.2024.110968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To fully understand brain processes in the real world, it is necessary to record and quantitatively analyse brain processes during real world human experiences. Mobile electroencephalography (EEG) and physiological data sensors provide new opportunities for studying humans outside of the laboratory. The purpose of this study was to document data from high-density EEG and mobile physiological sensors while humans performed a visual search task both on a treadmill in a laboratory setting and overground in a natural outdoor setting. The data set includes 49 young, healthy participants on an outdoor arboretum path and on a treadmill in a laboratory with a large virtual reality screen. The data provide a valuable research tool for scientists interested in signal processing, electrocortical brain processes, mobile brain imaging, and brain-computer interfaces based on mobile EEG. Given the comparison data between laboratory and real world conditions, researchers can test the viability of new processing algorithms across conditions or investigate changes in electrocortical activity related to behavioural dynamics coded into the data.</div></div>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352340924009302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924009302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Mobile brain–body imaging data set of indoor treadmill walking and outdoor walking with a visual search task
To fully understand brain processes in the real world, it is necessary to record and quantitatively analyse brain processes during real world human experiences. Mobile electroencephalography (EEG) and physiological data sensors provide new opportunities for studying humans outside of the laboratory. The purpose of this study was to document data from high-density EEG and mobile physiological sensors while humans performed a visual search task both on a treadmill in a laboratory setting and overground in a natural outdoor setting. The data set includes 49 young, healthy participants on an outdoor arboretum path and on a treadmill in a laboratory with a large virtual reality screen. The data provide a valuable research tool for scientists interested in signal processing, electrocortical brain processes, mobile brain imaging, and brain-computer interfaces based on mobile EEG. Given the comparison data between laboratory and real world conditions, researchers can test the viability of new processing algorithms across conditions or investigate changes in electrocortical activity related to behavioural dynamics coded into the data.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.