Muneera Al-Mansoori, Mia Stephenson, Stuart Harrad, Mohamed Abou-Elwafa Abdallah
{"title":"英国自来水和瓶装水中的合成微塑料;对人类接触的影响","authors":"Muneera Al-Mansoori, Mia Stephenson, Stuart Harrad, Mohamed Abou-Elwafa Abdallah","doi":"10.1016/j.emcon.2024.100417","DOIUrl":null,"url":null,"abstract":"<div><div>There is increasing concern for public health over inadvertent human exposure to MPs due to potential adverse health effects linked to MPs polymeric composition, toxic chemical additives, and/or harmful microorganisms adsorbing onto their surfaces. While numerous studies have reported MPs occurrence and risk in the freshwater aquatic environment and drinking water sources (e.g., rivers, lakes, and reservoirs), the current state-of-knowledge on MPs pollution in drinking water (i.e., tap water and bottled water) remains limited at a global level. This paper provides the first comprehensive study of the occurrence, concentrations, size distribution, shape, and polymer type of MPs in 177 tap water samples from 13 cities in the United Kingdom, as well as 85 samples of bottled water from 17 popular brands, with various packaging materials, on the UK market.</div><div>MPs were detected in all tap water samples (range 6–100 MP/L) and bottled water samples (range 12–62 MP/L). Average MPs concentration in tap water (40 ± 16 MP/L) was statistically indistinguishable from that in bottled water (37 ± 11 MP/L). However, the average MPs particle size in tap water (32.4 μm) exceeded significantly (p < 0.05) that in bottled water (26.5 μm), indicating the various purification processes applied to bottled water may help remove larger MPs, but raises concern over the potential adverse health effects from exposure to smaller MPs. The most frequently detected polymer types were: polypropylene (PP), polyethylene (PE), and polyvinyl chloride (PVC) in tap water, and PE, PP and polyethylene terephthalate (PET) in bottled water. A strong correlation was observed (<em>r</em> = 0.68, <em>P</em> = 0.049) between the plastic cap material (PE) and the predominant polymer type in the bottled water. In terms of morphology, fragments and fibres were the most abundant MPs, together constituting 92 % and 96 % of MPs detected in tap and bottled water samples, respectively.</div><div>Using EFSA (European Food Safety Authority) recommended daily water intakes, the corresponding exposures to MPs in different UK age groups were estimated. On a body weight (BW) basis, infants and toddlers were exposed (4 <em>MP/kg BW/day</em>) at a higher level than adults (1 <em>MP/kg BW/day</em>). This raises concern, given the former's incompletely developed immune/nervous systems rendering them at higher risk of adverse health effects from such exposure.</div></div>","PeriodicalId":11539,"journal":{"name":"Emerging Contaminants","volume":"11 1","pages":"Article 100417"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Microplastics in UK tap and bottled water; Implications for human exposure\",\"authors\":\"Muneera Al-Mansoori, Mia Stephenson, Stuart Harrad, Mohamed Abou-Elwafa Abdallah\",\"doi\":\"10.1016/j.emcon.2024.100417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>There is increasing concern for public health over inadvertent human exposure to MPs due to potential adverse health effects linked to MPs polymeric composition, toxic chemical additives, and/or harmful microorganisms adsorbing onto their surfaces. While numerous studies have reported MPs occurrence and risk in the freshwater aquatic environment and drinking water sources (e.g., rivers, lakes, and reservoirs), the current state-of-knowledge on MPs pollution in drinking water (i.e., tap water and bottled water) remains limited at a global level. This paper provides the first comprehensive study of the occurrence, concentrations, size distribution, shape, and polymer type of MPs in 177 tap water samples from 13 cities in the United Kingdom, as well as 85 samples of bottled water from 17 popular brands, with various packaging materials, on the UK market.</div><div>MPs were detected in all tap water samples (range 6–100 MP/L) and bottled water samples (range 12–62 MP/L). Average MPs concentration in tap water (40 ± 16 MP/L) was statistically indistinguishable from that in bottled water (37 ± 11 MP/L). However, the average MPs particle size in tap water (32.4 μm) exceeded significantly (p < 0.05) that in bottled water (26.5 μm), indicating the various purification processes applied to bottled water may help remove larger MPs, but raises concern over the potential adverse health effects from exposure to smaller MPs. The most frequently detected polymer types were: polypropylene (PP), polyethylene (PE), and polyvinyl chloride (PVC) in tap water, and PE, PP and polyethylene terephthalate (PET) in bottled water. A strong correlation was observed (<em>r</em> = 0.68, <em>P</em> = 0.049) between the plastic cap material (PE) and the predominant polymer type in the bottled water. In terms of morphology, fragments and fibres were the most abundant MPs, together constituting 92 % and 96 % of MPs detected in tap and bottled water samples, respectively.</div><div>Using EFSA (European Food Safety Authority) recommended daily water intakes, the corresponding exposures to MPs in different UK age groups were estimated. On a body weight (BW) basis, infants and toddlers were exposed (4 <em>MP/kg BW/day</em>) at a higher level than adults (1 <em>MP/kg BW/day</em>). This raises concern, given the former's incompletely developed immune/nervous systems rendering them at higher risk of adverse health effects from such exposure.</div></div>\",\"PeriodicalId\":11539,\"journal\":{\"name\":\"Emerging Contaminants\",\"volume\":\"11 1\",\"pages\":\"Article 100417\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Contaminants\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405665024001185\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Contaminants","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405665024001185","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Synthetic Microplastics in UK tap and bottled water; Implications for human exposure
There is increasing concern for public health over inadvertent human exposure to MPs due to potential adverse health effects linked to MPs polymeric composition, toxic chemical additives, and/or harmful microorganisms adsorbing onto their surfaces. While numerous studies have reported MPs occurrence and risk in the freshwater aquatic environment and drinking water sources (e.g., rivers, lakes, and reservoirs), the current state-of-knowledge on MPs pollution in drinking water (i.e., tap water and bottled water) remains limited at a global level. This paper provides the first comprehensive study of the occurrence, concentrations, size distribution, shape, and polymer type of MPs in 177 tap water samples from 13 cities in the United Kingdom, as well as 85 samples of bottled water from 17 popular brands, with various packaging materials, on the UK market.
MPs were detected in all tap water samples (range 6–100 MP/L) and bottled water samples (range 12–62 MP/L). Average MPs concentration in tap water (40 ± 16 MP/L) was statistically indistinguishable from that in bottled water (37 ± 11 MP/L). However, the average MPs particle size in tap water (32.4 μm) exceeded significantly (p < 0.05) that in bottled water (26.5 μm), indicating the various purification processes applied to bottled water may help remove larger MPs, but raises concern over the potential adverse health effects from exposure to smaller MPs. The most frequently detected polymer types were: polypropylene (PP), polyethylene (PE), and polyvinyl chloride (PVC) in tap water, and PE, PP and polyethylene terephthalate (PET) in bottled water. A strong correlation was observed (r = 0.68, P = 0.049) between the plastic cap material (PE) and the predominant polymer type in the bottled water. In terms of morphology, fragments and fibres were the most abundant MPs, together constituting 92 % and 96 % of MPs detected in tap and bottled water samples, respectively.
Using EFSA (European Food Safety Authority) recommended daily water intakes, the corresponding exposures to MPs in different UK age groups were estimated. On a body weight (BW) basis, infants and toddlers were exposed (4 MP/kg BW/day) at a higher level than adults (1 MP/kg BW/day). This raises concern, given the former's incompletely developed immune/nervous systems rendering them at higher risk of adverse health effects from such exposure.
期刊介绍:
Emerging Contaminants is an outlet for world-leading research addressing problems associated with environmental contamination caused by emerging contaminants and their solutions. Emerging contaminants are defined as chemicals that are not currently (or have been only recently) regulated and about which there exist concerns regarding their impact on human or ecological health. Examples of emerging contaminants include disinfection by-products, pharmaceutical and personal care products, persistent organic chemicals, and mercury etc. as well as their degradation products. We encourage papers addressing science that facilitates greater understanding of the nature, extent, and impacts of the presence of emerging contaminants in the environment; technology that exploits original principles to reduce and control their environmental presence; as well as the development, implementation and efficacy of national and international policies to protect human health and the environment from emerging contaminants.