{"title":"莱斯利-高尔型捕食者-猎物系统的动态变化与群居行为和猎物的不断捕获","authors":"Yong Yao","doi":"10.1016/j.matcom.2024.09.026","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the dynamics of a Leslie–Gower type predator–prey system with herd behavior and constant harvesting in prey are investigated. Earlier work has shown that the herd behavior in prey merely induces a supercritical Hopf bifurcation in the classic Leslie–Gower predator–prey system in the absence of harvesting. However, the work in this paper shows that the presence of herd behavior and constant harvesting in prey can give rise to numerous kinds of bifurcation at the non-hyperbolic equilibria in the classic Leslie–Gower predator–prey system such as two saddle–node bifurcations and one Bogdanov–Takens bifurcation of codimension two at the degenerate equilibria and one degenerate Hopf bifurcation of codimension three at the weak focus. Some numerical simulations are also provided to verify the theoretical results and evaluate their biological implications such as the changes of phase diagram near the degenerate equilibrium due to the Bogdanov–Takens bifurcation and the coexistence of multiple limit cycles arising from the degenerate Hopf bifurcation. Hence, the research results reveal that the herd behavior and constant harvesting in prey have a strong influence on the dynamics and also contribute to promoting the ecological diversity and maintaining the long-term economic benefits.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a Leslie–Gower type predator–prey system with herd behavior and constant harvesting in prey\",\"authors\":\"Yong Yao\",\"doi\":\"10.1016/j.matcom.2024.09.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, the dynamics of a Leslie–Gower type predator–prey system with herd behavior and constant harvesting in prey are investigated. Earlier work has shown that the herd behavior in prey merely induces a supercritical Hopf bifurcation in the classic Leslie–Gower predator–prey system in the absence of harvesting. However, the work in this paper shows that the presence of herd behavior and constant harvesting in prey can give rise to numerous kinds of bifurcation at the non-hyperbolic equilibria in the classic Leslie–Gower predator–prey system such as two saddle–node bifurcations and one Bogdanov–Takens bifurcation of codimension two at the degenerate equilibria and one degenerate Hopf bifurcation of codimension three at the weak focus. Some numerical simulations are also provided to verify the theoretical results and evaluate their biological implications such as the changes of phase diagram near the degenerate equilibrium due to the Bogdanov–Takens bifurcation and the coexistence of multiple limit cycles arising from the degenerate Hopf bifurcation. Hence, the research results reveal that the herd behavior and constant harvesting in prey have a strong influence on the dynamics and also contribute to promoting the ecological diversity and maintaining the long-term economic benefits.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003811\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003811","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Dynamics of a Leslie–Gower type predator–prey system with herd behavior and constant harvesting in prey
In this paper, the dynamics of a Leslie–Gower type predator–prey system with herd behavior and constant harvesting in prey are investigated. Earlier work has shown that the herd behavior in prey merely induces a supercritical Hopf bifurcation in the classic Leslie–Gower predator–prey system in the absence of harvesting. However, the work in this paper shows that the presence of herd behavior and constant harvesting in prey can give rise to numerous kinds of bifurcation at the non-hyperbolic equilibria in the classic Leslie–Gower predator–prey system such as two saddle–node bifurcations and one Bogdanov–Takens bifurcation of codimension two at the degenerate equilibria and one degenerate Hopf bifurcation of codimension three at the weak focus. Some numerical simulations are also provided to verify the theoretical results and evaluate their biological implications such as the changes of phase diagram near the degenerate equilibrium due to the Bogdanov–Takens bifurcation and the coexistence of multiple limit cycles arising from the degenerate Hopf bifurcation. Hence, the research results reveal that the herd behavior and constant harvesting in prey have a strong influence on the dynamics and also contribute to promoting the ecological diversity and maintaining the long-term economic benefits.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.