从生物质衍生化合物中生物催化合成香兰素:综述

IF 5.2 2区 化学 Q1 CHEMISTRY, APPLIED Catalysis Today Pub Date : 2024-09-27 DOI:10.1016/j.cattod.2024.115077
Zhi-Gang Zhang , Shi-Kai Jiang , Xi Shen , Jia-Chun Lin , Yan Yi , Xiao-Jun Ji
{"title":"从生物质衍生化合物中生物催化合成香兰素:综述","authors":"Zhi-Gang Zhang ,&nbsp;Shi-Kai Jiang ,&nbsp;Xi Shen ,&nbsp;Jia-Chun Lin ,&nbsp;Yan Yi ,&nbsp;Xiao-Jun Ji","doi":"10.1016/j.cattod.2024.115077","DOIUrl":null,"url":null,"abstract":"<div><div>Vanillin is an important flavoring compound commonly obtained through natural extraction or by chemical synthesis. However, the supply of naturally extracted vanillin is insufficient to meet the growing demand, and the utilization of chemically synthesized vanillin in various industries such as food and perfume is constrained due to growing health and environmental concerns. In light of this situation, biocatalysis offers promising perspectives to tackle these emerging challenges by employing either isolated enzymes or whole cells as biocatalysts. Recently, the biocatalytic synthesis of vanillin using biomass-derived compounds as precursors has been attracting increasing attention. This review aims to discuss recent advances in the synthesis of vanillin from various renewable biomass-based substrates through biocatalytic processes. A variety of recently discovered enzymes or recombinant cells used as biocatalysts for the production of vanillin are summarized. In addition, the protein engineering and the different strategies of constructing enzymatic cascade reactions applied to improve the bioconversion efficiency in vanillin production are also discussed.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"445 ","pages":"Article 115077"},"PeriodicalIF":5.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biocatalytic synthesis of vanillin from biomass-derived compounds: A review\",\"authors\":\"Zhi-Gang Zhang ,&nbsp;Shi-Kai Jiang ,&nbsp;Xi Shen ,&nbsp;Jia-Chun Lin ,&nbsp;Yan Yi ,&nbsp;Xiao-Jun Ji\",\"doi\":\"10.1016/j.cattod.2024.115077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vanillin is an important flavoring compound commonly obtained through natural extraction or by chemical synthesis. However, the supply of naturally extracted vanillin is insufficient to meet the growing demand, and the utilization of chemically synthesized vanillin in various industries such as food and perfume is constrained due to growing health and environmental concerns. In light of this situation, biocatalysis offers promising perspectives to tackle these emerging challenges by employing either isolated enzymes or whole cells as biocatalysts. Recently, the biocatalytic synthesis of vanillin using biomass-derived compounds as precursors has been attracting increasing attention. This review aims to discuss recent advances in the synthesis of vanillin from various renewable biomass-based substrates through biocatalytic processes. A variety of recently discovered enzymes or recombinant cells used as biocatalysts for the production of vanillin are summarized. In addition, the protein engineering and the different strategies of constructing enzymatic cascade reactions applied to improve the bioconversion efficiency in vanillin production are also discussed.</div></div>\",\"PeriodicalId\":264,\"journal\":{\"name\":\"Catalysis Today\",\"volume\":\"445 \",\"pages\":\"Article 115077\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Today\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920586124005716\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124005716","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

香兰素是一种重要的调味化合物,通常通过天然提取或化学合成获得。然而,天然提取的香兰素供应不足以满足日益增长的需求,而化学合成的香兰素在食品和香水等各行业中的使用也因日益增长的健康和环境问题而受到限制。有鉴于此,生物催化利用分离的酶或整个细胞作为生物催化剂,为解决这些新出现的挑战提供了广阔的前景。最近,以生物质衍生化合物为前体进行香兰素生物催化合成的研究越来越受到关注。本综述旨在讨论通过生物催化过程从各种可再生生物质基底合成香兰素的最新进展。综述了最近发现的用作生产香兰素的生物催化剂的各种酶或重组细胞。此外,还讨论了用于提高香兰素生产生物转化效率的蛋白质工程和构建酶级联反应的不同策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biocatalytic synthesis of vanillin from biomass-derived compounds: A review
Vanillin is an important flavoring compound commonly obtained through natural extraction or by chemical synthesis. However, the supply of naturally extracted vanillin is insufficient to meet the growing demand, and the utilization of chemically synthesized vanillin in various industries such as food and perfume is constrained due to growing health and environmental concerns. In light of this situation, biocatalysis offers promising perspectives to tackle these emerging challenges by employing either isolated enzymes or whole cells as biocatalysts. Recently, the biocatalytic synthesis of vanillin using biomass-derived compounds as precursors has been attracting increasing attention. This review aims to discuss recent advances in the synthesis of vanillin from various renewable biomass-based substrates through biocatalytic processes. A variety of recently discovered enzymes or recombinant cells used as biocatalysts for the production of vanillin are summarized. In addition, the protein engineering and the different strategies of constructing enzymatic cascade reactions applied to improve the bioconversion efficiency in vanillin production are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Today
Catalysis Today 化学-工程:化工
CiteScore
11.50
自引率
3.80%
发文量
573
审稿时长
2.9 months
期刊介绍: Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues. Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.
期刊最新文献
Using waste to treat waste: Catalysts from spent alkaline batteries for glycolysis of PET waste Selective hydrogenation of furfuryl alcohol to 1,2-pentanediol over Pt/Mg2AlO catalysts with different synthesis methods Novel preparation of polyphenylacetylene semiconductor: Potential application in supercapacitors Single atom and sub-nanometer copper clusters deposited on titania for hydrogen evolution reaction: A density functional study Performance of copper-aluminum catalysts impregnated with potassium in NO and N2O reduction by CO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1