Chi Zhao , Petri Penttinen , Lingzi Zhang , Ling Dong , Fengju Zhang , Decong Liao , Suyi Zhang , Zhihua Li , Xiaoping Zhang
{"title":"从发酵蚕豆辣椒酱中筛选出一种新型高级苯乳酸生产真菌 Kodamaea ohmeri w5","authors":"Chi Zhao , Petri Penttinen , Lingzi Zhang , Ling Dong , Fengju Zhang , Decong Liao , Suyi Zhang , Zhihua Li , Xiaoping Zhang","doi":"10.1016/j.ijfoodmicro.2024.110923","DOIUrl":null,"url":null,"abstract":"<div><div>Phenyllactic acid (PLA) is a broad-spectrum and efficient antimicrobial phenolic acid with potential applications in the food industry. Previous studies have demonstrated that fungi may be ideal producers of PLA. In this study, 15 fungi screened from Doubanjiang with the ability to produce PLA were first reported, including <em>Wickerhamomyces anomalus</em>, <em>Candida etchellsii</em>, <em>Candida parasitosis</em>, <em>Pichia kudriavzevii</em>, <em>Pichia membranifaciens</em> and <em>Kodamaea ohmeri</em>. Among them, <em>K. ohmeri</em> w5 had the highest PLA yield, producing up to 7160 mg/L PLA in shake flask fermentation with phenylalanine as substrate, which was more than ten times higher than the PLA produced by wild-type LAB under the similar conditions. In addition, <em>K. ohmeri</em> w5 was able to grow under extreme hypertonic conditions of 20 % NaCl (<em>w</em>/<em>v</em>) and 50 % glucose (w/v) as well as produce 57.12 ± 0.42 and 1609.22 ± 36.26 mg/L of PLA, respectively. Furthermore, the fermentation supernatant of <em>K. ohmeri</em> w5 demonstrated direct inhibitory effects against foodborne pathogenic microorganisms, <em>Aspergillus flavus</em> and <em>Bacillus cereus</em>. However, the inhibitory effect was weaker than that of the PLA standard at the same concentration. Further, 12,497,932 bp of w5 genome-wide information was obtained by sequencing and assembling. And its gene model was predicted based on transcriptomic evidence, which showed that a total of 7 genes related to PLA synthesis were identified in the w5 genome. Based on qRT-PCR, structure prediction, and molecular docking, a potentially key genetic resource from <em>K. ohmeri</em> w5 for PLA production was uncovered. The results will provide novel producers of PLA and its potential genetic resources.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"426 ","pages":"Article 110923"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel high-level phenyllactic acid fungal producer, Kodamaea ohmeri w5 screened from fermented broad bean-chili-paste\",\"authors\":\"Chi Zhao , Petri Penttinen , Lingzi Zhang , Ling Dong , Fengju Zhang , Decong Liao , Suyi Zhang , Zhihua Li , Xiaoping Zhang\",\"doi\":\"10.1016/j.ijfoodmicro.2024.110923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phenyllactic acid (PLA) is a broad-spectrum and efficient antimicrobial phenolic acid with potential applications in the food industry. Previous studies have demonstrated that fungi may be ideal producers of PLA. In this study, 15 fungi screened from Doubanjiang with the ability to produce PLA were first reported, including <em>Wickerhamomyces anomalus</em>, <em>Candida etchellsii</em>, <em>Candida parasitosis</em>, <em>Pichia kudriavzevii</em>, <em>Pichia membranifaciens</em> and <em>Kodamaea ohmeri</em>. Among them, <em>K. ohmeri</em> w5 had the highest PLA yield, producing up to 7160 mg/L PLA in shake flask fermentation with phenylalanine as substrate, which was more than ten times higher than the PLA produced by wild-type LAB under the similar conditions. In addition, <em>K. ohmeri</em> w5 was able to grow under extreme hypertonic conditions of 20 % NaCl (<em>w</em>/<em>v</em>) and 50 % glucose (w/v) as well as produce 57.12 ± 0.42 and 1609.22 ± 36.26 mg/L of PLA, respectively. Furthermore, the fermentation supernatant of <em>K. ohmeri</em> w5 demonstrated direct inhibitory effects against foodborne pathogenic microorganisms, <em>Aspergillus flavus</em> and <em>Bacillus cereus</em>. However, the inhibitory effect was weaker than that of the PLA standard at the same concentration. Further, 12,497,932 bp of w5 genome-wide information was obtained by sequencing and assembling. And its gene model was predicted based on transcriptomic evidence, which showed that a total of 7 genes related to PLA synthesis were identified in the w5 genome. Based on qRT-PCR, structure prediction, and molecular docking, a potentially key genetic resource from <em>K. ohmeri</em> w5 for PLA production was uncovered. The results will provide novel producers of PLA and its potential genetic resources.</div></div>\",\"PeriodicalId\":14095,\"journal\":{\"name\":\"International journal of food microbiology\",\"volume\":\"426 \",\"pages\":\"Article 110923\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of food microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168160524003672\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160524003672","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A novel high-level phenyllactic acid fungal producer, Kodamaea ohmeri w5 screened from fermented broad bean-chili-paste
Phenyllactic acid (PLA) is a broad-spectrum and efficient antimicrobial phenolic acid with potential applications in the food industry. Previous studies have demonstrated that fungi may be ideal producers of PLA. In this study, 15 fungi screened from Doubanjiang with the ability to produce PLA were first reported, including Wickerhamomyces anomalus, Candida etchellsii, Candida parasitosis, Pichia kudriavzevii, Pichia membranifaciens and Kodamaea ohmeri. Among them, K. ohmeri w5 had the highest PLA yield, producing up to 7160 mg/L PLA in shake flask fermentation with phenylalanine as substrate, which was more than ten times higher than the PLA produced by wild-type LAB under the similar conditions. In addition, K. ohmeri w5 was able to grow under extreme hypertonic conditions of 20 % NaCl (w/v) and 50 % glucose (w/v) as well as produce 57.12 ± 0.42 and 1609.22 ± 36.26 mg/L of PLA, respectively. Furthermore, the fermentation supernatant of K. ohmeri w5 demonstrated direct inhibitory effects against foodborne pathogenic microorganisms, Aspergillus flavus and Bacillus cereus. However, the inhibitory effect was weaker than that of the PLA standard at the same concentration. Further, 12,497,932 bp of w5 genome-wide information was obtained by sequencing and assembling. And its gene model was predicted based on transcriptomic evidence, which showed that a total of 7 genes related to PLA synthesis were identified in the w5 genome. Based on qRT-PCR, structure prediction, and molecular docking, a potentially key genetic resource from K. ohmeri w5 for PLA production was uncovered. The results will provide novel producers of PLA and its potential genetic resources.
期刊介绍:
The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.