{"title":"用于雨雾天气实时语义分割的样式优化网络","authors":"Yifang Huang, Haitao He, Hongdou He, Guyu Zhao, Peng Shi, Pengpeng Fu","doi":"10.1016/j.image.2024.117199","DOIUrl":null,"url":null,"abstract":"<div><div>Semantic segmentation is an essential task in the field of computer vision. Existing semantic segmentation models can achieve good results under good weather and lighting conditions. However, when the external environment changes, the effectiveness of these models are seriously affected. Therefore, we focus on the task of semantic segmentation in rainy and foggy weather. Fog is a common phenomenon in rainy weather conditions and has a negative impact on image visibility. Besides, to make the algorithm satisfy the application requirements of mobile devices, the computational cost and the real-time requirement of the model have become one of the major points of our research. In this paper, we propose a novel Style Optimization Network (SONet) architecture, containing a Style Optimization Module (SOM) that can dynamically learn style information, and a Key information Extraction Module (KEM) that extracts important spatial and contextual information. This can improve the learning ability and robustness of the model for rainy and foggy conditions. Meanwhile, we achieve real-time performance by using lightweight modules and a backbone network with low computational complexity. To validate the effectiveness of our SONet, we synthesized CityScapes dataset for rainy and foggy weather and evaluated the accuracy and complexity of our model. Our model achieves a segmentation accuracy of 75.29% MIoU and 83.62% MPA on a NVIDIA TITAN Xp GPU. Several comparative experiments have shown that our SONet can achieve good performance in semantic segmentation tasks under rainy and foggy weather, and due to the lightweight design of the model we have a good advantage in both accuracy and model complexity.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"130 ","pages":"Article 117199"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Style Optimization Networks for real-time semantic segmentation of rainy and foggy weather\",\"authors\":\"Yifang Huang, Haitao He, Hongdou He, Guyu Zhao, Peng Shi, Pengpeng Fu\",\"doi\":\"10.1016/j.image.2024.117199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Semantic segmentation is an essential task in the field of computer vision. Existing semantic segmentation models can achieve good results under good weather and lighting conditions. However, when the external environment changes, the effectiveness of these models are seriously affected. Therefore, we focus on the task of semantic segmentation in rainy and foggy weather. Fog is a common phenomenon in rainy weather conditions and has a negative impact on image visibility. Besides, to make the algorithm satisfy the application requirements of mobile devices, the computational cost and the real-time requirement of the model have become one of the major points of our research. In this paper, we propose a novel Style Optimization Network (SONet) architecture, containing a Style Optimization Module (SOM) that can dynamically learn style information, and a Key information Extraction Module (KEM) that extracts important spatial and contextual information. This can improve the learning ability and robustness of the model for rainy and foggy conditions. Meanwhile, we achieve real-time performance by using lightweight modules and a backbone network with low computational complexity. To validate the effectiveness of our SONet, we synthesized CityScapes dataset for rainy and foggy weather and evaluated the accuracy and complexity of our model. Our model achieves a segmentation accuracy of 75.29% MIoU and 83.62% MPA on a NVIDIA TITAN Xp GPU. Several comparative experiments have shown that our SONet can achieve good performance in semantic segmentation tasks under rainy and foggy weather, and due to the lightweight design of the model we have a good advantage in both accuracy and model complexity.</div></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"130 \",\"pages\":\"Article 117199\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524001000\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524001000","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Style Optimization Networks for real-time semantic segmentation of rainy and foggy weather
Semantic segmentation is an essential task in the field of computer vision. Existing semantic segmentation models can achieve good results under good weather and lighting conditions. However, when the external environment changes, the effectiveness of these models are seriously affected. Therefore, we focus on the task of semantic segmentation in rainy and foggy weather. Fog is a common phenomenon in rainy weather conditions and has a negative impact on image visibility. Besides, to make the algorithm satisfy the application requirements of mobile devices, the computational cost and the real-time requirement of the model have become one of the major points of our research. In this paper, we propose a novel Style Optimization Network (SONet) architecture, containing a Style Optimization Module (SOM) that can dynamically learn style information, and a Key information Extraction Module (KEM) that extracts important spatial and contextual information. This can improve the learning ability and robustness of the model for rainy and foggy conditions. Meanwhile, we achieve real-time performance by using lightweight modules and a backbone network with low computational complexity. To validate the effectiveness of our SONet, we synthesized CityScapes dataset for rainy and foggy weather and evaluated the accuracy and complexity of our model. Our model achieves a segmentation accuracy of 75.29% MIoU and 83.62% MPA on a NVIDIA TITAN Xp GPU. Several comparative experiments have shown that our SONet can achieve good performance in semantic segmentation tasks under rainy and foggy weather, and due to the lightweight design of the model we have a good advantage in both accuracy and model complexity.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.