{"title":"重组氧化物核燃料中裂变气体扫除的两相模型","authors":"G. Zullo , A. Scolaro , T. Barani , D. Pizzocri","doi":"10.1016/j.nucengdes.2024.113602","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we propose a modelling approach for the intra-granular fission gas behaviour in UO<sub>2</sub> under restructuring process. Leveraging the definition of restructured volume fraction, we consider the fuel matrix transition from the non-restructured to the restructured phase, together with the evolution of the corresponding fission gas concentrations retained in the fuel matrix. Firstly, we derive a sweeping term that exchanges fission gas atoms from the non-restructured to the restructured fuel region. The sweeping term is then included in the conventional intra-granular fission gas diffusion problem. Secondly, the spectral diffusion algorithm is employed to solve two spatially-dimensionless problems, properly representing the non-restructured region with micrometric grains and the restructured region with sub-micrometric grains. The model developed is implemented in SCIANTIX, a 0D meso-scale code for physics-based modelling of fission gas behaviour in nuclear oxide fuel and compared with experimental data and semi-empirical models.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-phase modelling for fission gas sweeping in restructuring nuclear oxide fuel\",\"authors\":\"G. Zullo , A. Scolaro , T. Barani , D. Pizzocri\",\"doi\":\"10.1016/j.nucengdes.2024.113602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we propose a modelling approach for the intra-granular fission gas behaviour in UO<sub>2</sub> under restructuring process. Leveraging the definition of restructured volume fraction, we consider the fuel matrix transition from the non-restructured to the restructured phase, together with the evolution of the corresponding fission gas concentrations retained in the fuel matrix. Firstly, we derive a sweeping term that exchanges fission gas atoms from the non-restructured to the restructured fuel region. The sweeping term is then included in the conventional intra-granular fission gas diffusion problem. Secondly, the spectral diffusion algorithm is employed to solve two spatially-dimensionless problems, properly representing the non-restructured region with micrometric grains and the restructured region with sub-micrometric grains. The model developed is implemented in SCIANTIX, a 0D meso-scale code for physics-based modelling of fission gas behaviour in nuclear oxide fuel and compared with experimental data and semi-empirical models.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549324007027\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007027","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Two-phase modelling for fission gas sweeping in restructuring nuclear oxide fuel
In this work, we propose a modelling approach for the intra-granular fission gas behaviour in UO2 under restructuring process. Leveraging the definition of restructured volume fraction, we consider the fuel matrix transition from the non-restructured to the restructured phase, together with the evolution of the corresponding fission gas concentrations retained in the fuel matrix. Firstly, we derive a sweeping term that exchanges fission gas atoms from the non-restructured to the restructured fuel region. The sweeping term is then included in the conventional intra-granular fission gas diffusion problem. Secondly, the spectral diffusion algorithm is employed to solve two spatially-dimensionless problems, properly representing the non-restructured region with micrometric grains and the restructured region with sub-micrometric grains. The model developed is implemented in SCIANTIX, a 0D meso-scale code for physics-based modelling of fission gas behaviour in nuclear oxide fuel and compared with experimental data and semi-empirical models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.