Fabian B Kraft, Lukas Biermann, Linda Schäker-Hübner, Maria Hanl, Alexandra Hamacher, Matthias U Kassack, Finn K Hansen
{"title":"基于酰肼的 I 类选择性 HDAC 抑制剂可协同完全逆转铂耐药性实体癌细胞的化疗耐药性。","authors":"Fabian B Kraft, Lukas Biermann, Linda Schäker-Hübner, Maria Hanl, Alexandra Hamacher, Matthias U Kassack, Finn K Hansen","doi":"10.1021/acs.jmedchem.4c01817","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we have synthesized a set of peptoid-based histone deacetylase inhibitors (HDACi) with a substituted hydrazide moiety as zinc-binding group. Subsequently, all compounds were evaluated in biochemical HDAC inhibition assays and for their antiproliferative activity against native and cisplatin-resistant cancer cell lines. The hydrazide derivatives with a propyl or butyl substituent (compounds <b>5</b> and <b>6</b>) emerged as the most potent class I HDAC selective inhibitors (HDAC1-3). Further, compounds <b>5</b> and <b>6</b> outperformed entinostat in cytotoxicity assays and were able to reverse chemoresistance in cisplatin-resistant A2780 (ovarian) and Cal27 (head-neck) cancer cell lines. Moreover, the hydrazide derivatives <b>5</b> and <b>6</b> showed strong synergism with cisplatin (combination indices <0.2), again outperforming entinostat, and increased DNA damage, p21, and pro-apoptotic BIM expression, leading to caspase-mediated apoptosis and cell death. Thus, compounds <b>5</b> and <b>6</b> represent promising lead structures for developing new HDACi capable of reversing chemoresistance in cisplatin resistant cancer cells.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":" ","pages":"17796-17819"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrazide-Based Class I Selective HDAC Inhibitors Completely Reverse Chemoresistance Synergistically in Platinum-Resistant Solid Cancer Cells.\",\"authors\":\"Fabian B Kraft, Lukas Biermann, Linda Schäker-Hübner, Maria Hanl, Alexandra Hamacher, Matthias U Kassack, Finn K Hansen\",\"doi\":\"10.1021/acs.jmedchem.4c01817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we have synthesized a set of peptoid-based histone deacetylase inhibitors (HDACi) with a substituted hydrazide moiety as zinc-binding group. Subsequently, all compounds were evaluated in biochemical HDAC inhibition assays and for their antiproliferative activity against native and cisplatin-resistant cancer cell lines. The hydrazide derivatives with a propyl or butyl substituent (compounds <b>5</b> and <b>6</b>) emerged as the most potent class I HDAC selective inhibitors (HDAC1-3). Further, compounds <b>5</b> and <b>6</b> outperformed entinostat in cytotoxicity assays and were able to reverse chemoresistance in cisplatin-resistant A2780 (ovarian) and Cal27 (head-neck) cancer cell lines. Moreover, the hydrazide derivatives <b>5</b> and <b>6</b> showed strong synergism with cisplatin (combination indices <0.2), again outperforming entinostat, and increased DNA damage, p21, and pro-apoptotic BIM expression, leading to caspase-mediated apoptosis and cell death. Thus, compounds <b>5</b> and <b>6</b> represent promising lead structures for developing new HDACi capable of reversing chemoresistance in cisplatin resistant cancer cells.</p>\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\" \",\"pages\":\"17796-17819\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c01817\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01817","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Hydrazide-Based Class I Selective HDAC Inhibitors Completely Reverse Chemoresistance Synergistically in Platinum-Resistant Solid Cancer Cells.
In this work, we have synthesized a set of peptoid-based histone deacetylase inhibitors (HDACi) with a substituted hydrazide moiety as zinc-binding group. Subsequently, all compounds were evaluated in biochemical HDAC inhibition assays and for their antiproliferative activity against native and cisplatin-resistant cancer cell lines. The hydrazide derivatives with a propyl or butyl substituent (compounds 5 and 6) emerged as the most potent class I HDAC selective inhibitors (HDAC1-3). Further, compounds 5 and 6 outperformed entinostat in cytotoxicity assays and were able to reverse chemoresistance in cisplatin-resistant A2780 (ovarian) and Cal27 (head-neck) cancer cell lines. Moreover, the hydrazide derivatives 5 and 6 showed strong synergism with cisplatin (combination indices <0.2), again outperforming entinostat, and increased DNA damage, p21, and pro-apoptotic BIM expression, leading to caspase-mediated apoptosis and cell death. Thus, compounds 5 and 6 represent promising lead structures for developing new HDACi capable of reversing chemoresistance in cisplatin resistant cancer cells.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.