{"title":"右美托咪定通过调节自噬减轻CoCl2-诱导的INS-1细胞缺氧性细胞损伤。","authors":"Jin Ha Park, Ju Eun Oh, Namo Kim, Young-Lan Kwak","doi":"10.4097/kja.24457","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ischemia-reperfusion (I/R) injury is inevitable during the perioperative period. The pancreas is susceptible to I/R injury. Autophagy, a self-digestion process, is upregulated during I/R injury and strongly induced by hypoxia. This study aims to determine whether dexmedetomidine can decrease pancreatic β-cell damage by regulating autophagy under hypoxia.</p><p><strong>Methods: </strong>INS-1 rat insulinoma cells were cultured in dexmedetomidine before being exposed to cobalt chloride (CoCl2)-induced hypoxia. Cell viability and the expression of autophagy-related proteins (light chain 3B [LC3B]-II, p62, and ATGs) were assessed. The expression of apoptosis-related proteins (BCL-2 and P-BAD) were also evaluated. CoCl2-treated INS-1 cells were pretreated with the autophagosome formation inhibitor, 3-methyladenine (3-MA), to compare its effects with those of dexmedetomidine. Bafilomycin-A1 (Baf-A1) that inhibits autophagosome degradation was used to confirm the changes in autophagosome formation induced by dexmedetomidine.</p><p><strong>Results: </strong>Dexmedetomidine attenuated the increased expression of autophagic proteins (LC3B-II, p62, and ATGs) and reversed the CoCl2-induced reduction in the proliferation of INS-1 cells after hypoxia. Dexmedetomidine also alleviated the decreased expression of the anti-apoptotic protein (BCL-2) and the increased expression of apoptotic protein (BAX). Dexmedetomidine reduces the activation of autophagy through inhibiting autophagosome formation, as confirmed by a decrease in LC3B-II/I ratio, a marker of autophagosome formation, in LC3B turnover assay combined with Baf-A1.</p><p><strong>Conclusions: </strong>Dexmedetomidine alleviates the degree of cellular damage in INS-1 cells against CoCl2-induced hypoxia by regulating autophagosome formation. These results provide a basis for further studies to confirm these effects in clinical practice.</p>","PeriodicalId":17855,"journal":{"name":"Korean Journal of Anesthesiology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dexmedetomidine alleviates CoCl2-induced hypoxic cellular damage in INS-1 cells by regulating autophagy.\",\"authors\":\"Jin Ha Park, Ju Eun Oh, Namo Kim, Young-Lan Kwak\",\"doi\":\"10.4097/kja.24457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ischemia-reperfusion (I/R) injury is inevitable during the perioperative period. The pancreas is susceptible to I/R injury. Autophagy, a self-digestion process, is upregulated during I/R injury and strongly induced by hypoxia. This study aims to determine whether dexmedetomidine can decrease pancreatic β-cell damage by regulating autophagy under hypoxia.</p><p><strong>Methods: </strong>INS-1 rat insulinoma cells were cultured in dexmedetomidine before being exposed to cobalt chloride (CoCl2)-induced hypoxia. Cell viability and the expression of autophagy-related proteins (light chain 3B [LC3B]-II, p62, and ATGs) were assessed. The expression of apoptosis-related proteins (BCL-2 and P-BAD) were also evaluated. CoCl2-treated INS-1 cells were pretreated with the autophagosome formation inhibitor, 3-methyladenine (3-MA), to compare its effects with those of dexmedetomidine. Bafilomycin-A1 (Baf-A1) that inhibits autophagosome degradation was used to confirm the changes in autophagosome formation induced by dexmedetomidine.</p><p><strong>Results: </strong>Dexmedetomidine attenuated the increased expression of autophagic proteins (LC3B-II, p62, and ATGs) and reversed the CoCl2-induced reduction in the proliferation of INS-1 cells after hypoxia. Dexmedetomidine also alleviated the decreased expression of the anti-apoptotic protein (BCL-2) and the increased expression of apoptotic protein (BAX). Dexmedetomidine reduces the activation of autophagy through inhibiting autophagosome formation, as confirmed by a decrease in LC3B-II/I ratio, a marker of autophagosome formation, in LC3B turnover assay combined with Baf-A1.</p><p><strong>Conclusions: </strong>Dexmedetomidine alleviates the degree of cellular damage in INS-1 cells against CoCl2-induced hypoxia by regulating autophagosome formation. These results provide a basis for further studies to confirm these effects in clinical practice.</p>\",\"PeriodicalId\":17855,\"journal\":{\"name\":\"Korean Journal of Anesthesiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Anesthesiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4097/kja.24457\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANESTHESIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Anesthesiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4097/kja.24457","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
Dexmedetomidine alleviates CoCl2-induced hypoxic cellular damage in INS-1 cells by regulating autophagy.
Background: Ischemia-reperfusion (I/R) injury is inevitable during the perioperative period. The pancreas is susceptible to I/R injury. Autophagy, a self-digestion process, is upregulated during I/R injury and strongly induced by hypoxia. This study aims to determine whether dexmedetomidine can decrease pancreatic β-cell damage by regulating autophagy under hypoxia.
Methods: INS-1 rat insulinoma cells were cultured in dexmedetomidine before being exposed to cobalt chloride (CoCl2)-induced hypoxia. Cell viability and the expression of autophagy-related proteins (light chain 3B [LC3B]-II, p62, and ATGs) were assessed. The expression of apoptosis-related proteins (BCL-2 and P-BAD) were also evaluated. CoCl2-treated INS-1 cells were pretreated with the autophagosome formation inhibitor, 3-methyladenine (3-MA), to compare its effects with those of dexmedetomidine. Bafilomycin-A1 (Baf-A1) that inhibits autophagosome degradation was used to confirm the changes in autophagosome formation induced by dexmedetomidine.
Results: Dexmedetomidine attenuated the increased expression of autophagic proteins (LC3B-II, p62, and ATGs) and reversed the CoCl2-induced reduction in the proliferation of INS-1 cells after hypoxia. Dexmedetomidine also alleviated the decreased expression of the anti-apoptotic protein (BCL-2) and the increased expression of apoptotic protein (BAX). Dexmedetomidine reduces the activation of autophagy through inhibiting autophagosome formation, as confirmed by a decrease in LC3B-II/I ratio, a marker of autophagosome formation, in LC3B turnover assay combined with Baf-A1.
Conclusions: Dexmedetomidine alleviates the degree of cellular damage in INS-1 cells against CoCl2-induced hypoxia by regulating autophagosome formation. These results provide a basis for further studies to confirm these effects in clinical practice.