Bao Zhong, Wei Liang, Yujuan Zhao, Fenglin Li, Zijian Zhao, Yansong Gao, Ge Yang, Shengyu Li
{"title":"植物乳杆菌ELF051与黄芪多糖的组合能改善抗生素相关性腹泻小鼠的肠道屏障功能和肠道微生物群谱系","authors":"Bao Zhong, Wei Liang, Yujuan Zhao, Fenglin Li, Zijian Zhao, Yansong Gao, Ge Yang, Shengyu Li","doi":"10.1007/s12602-024-10368-3","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to investigate the improvement of the intestinal barrier and gut microbiota in mice with antibiotic-associated diarrhea (AAD) using Lactiplantibacillus plantarum ELF051 combined with Astragalus polysaccharides. The amoxicillin, clindamycin, and streptomycin triple-mixed antibiotic-induced AAD models were administered with L. plantarum ELF051 or Astragalus polysaccharides or L. plantarum ELF051 + Astragalus polysaccharides for 14 days. Our findings revealed that the combination of L. plantarum ELF051 and Astragalus polysaccharides elevated the number of goblet cells and enhanced the proportion of mucous within the colon tissue. Furthermore, the expression of sIgA and IgG were upregulated, while the levels of IL-17A, IL-4, DAO, D-LA, LPS, and TGF-β1 were downregulated. L. plantarum ELF051 combined with Astragalus polysaccharides elevated the expression of tight junction (TJ) proteins, facilitating intestinal mucosal repair via Smad signaling nodes. Furthermore, their combination effectively increased the relative abundance of lactic acid bacteria (LAB) and Allobaculum, and decreased the relative abundance of Bacteroides and Blautia. Spearman rank correlation analysis demonstrated that LAB were closely related to permeability factors, immune factors, and indicators of intestinal barrier function. In summary, the effect of combining L. plantarum ELF051 and Astragalus polysaccharides on AAD mice was achieved by enhancing intestinal barrier function and regulating the composition of the gut microbiota.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combination of Lactiplantibacillus Plantarum ELF051 and Astragalus Polysaccharides Improves Intestinal Barrier Function and Gut Microbiota Profiles in Mice with Antibiotic-Associated Diarrhea.\",\"authors\":\"Bao Zhong, Wei Liang, Yujuan Zhao, Fenglin Li, Zijian Zhao, Yansong Gao, Ge Yang, Shengyu Li\",\"doi\":\"10.1007/s12602-024-10368-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to investigate the improvement of the intestinal barrier and gut microbiota in mice with antibiotic-associated diarrhea (AAD) using Lactiplantibacillus plantarum ELF051 combined with Astragalus polysaccharides. The amoxicillin, clindamycin, and streptomycin triple-mixed antibiotic-induced AAD models were administered with L. plantarum ELF051 or Astragalus polysaccharides or L. plantarum ELF051 + Astragalus polysaccharides for 14 days. Our findings revealed that the combination of L. plantarum ELF051 and Astragalus polysaccharides elevated the number of goblet cells and enhanced the proportion of mucous within the colon tissue. Furthermore, the expression of sIgA and IgG were upregulated, while the levels of IL-17A, IL-4, DAO, D-LA, LPS, and TGF-β1 were downregulated. L. plantarum ELF051 combined with Astragalus polysaccharides elevated the expression of tight junction (TJ) proteins, facilitating intestinal mucosal repair via Smad signaling nodes. Furthermore, their combination effectively increased the relative abundance of lactic acid bacteria (LAB) and Allobaculum, and decreased the relative abundance of Bacteroides and Blautia. Spearman rank correlation analysis demonstrated that LAB were closely related to permeability factors, immune factors, and indicators of intestinal barrier function. In summary, the effect of combining L. plantarum ELF051 and Astragalus polysaccharides on AAD mice was achieved by enhancing intestinal barrier function and regulating the composition of the gut microbiota.</p>\",\"PeriodicalId\":20506,\"journal\":{\"name\":\"Probiotics and Antimicrobial Proteins\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probiotics and Antimicrobial Proteins\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12602-024-10368-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10368-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Combination of Lactiplantibacillus Plantarum ELF051 and Astragalus Polysaccharides Improves Intestinal Barrier Function and Gut Microbiota Profiles in Mice with Antibiotic-Associated Diarrhea.
The purpose of this study was to investigate the improvement of the intestinal barrier and gut microbiota in mice with antibiotic-associated diarrhea (AAD) using Lactiplantibacillus plantarum ELF051 combined with Astragalus polysaccharides. The amoxicillin, clindamycin, and streptomycin triple-mixed antibiotic-induced AAD models were administered with L. plantarum ELF051 or Astragalus polysaccharides or L. plantarum ELF051 + Astragalus polysaccharides for 14 days. Our findings revealed that the combination of L. plantarum ELF051 and Astragalus polysaccharides elevated the number of goblet cells and enhanced the proportion of mucous within the colon tissue. Furthermore, the expression of sIgA and IgG were upregulated, while the levels of IL-17A, IL-4, DAO, D-LA, LPS, and TGF-β1 were downregulated. L. plantarum ELF051 combined with Astragalus polysaccharides elevated the expression of tight junction (TJ) proteins, facilitating intestinal mucosal repair via Smad signaling nodes. Furthermore, their combination effectively increased the relative abundance of lactic acid bacteria (LAB) and Allobaculum, and decreased the relative abundance of Bacteroides and Blautia. Spearman rank correlation analysis demonstrated that LAB were closely related to permeability factors, immune factors, and indicators of intestinal barrier function. In summary, the effect of combining L. plantarum ELF051 and Astragalus polysaccharides on AAD mice was achieved by enhancing intestinal barrier function and regulating the composition of the gut microbiota.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.