{"title":"以 pannexin1 为靶点的三磷酸腺苷释放抑制剂可改善脊髓损伤后的恢复。","authors":"Kazuaki Morishita, Hiroaki Nakashima, Masaaki Machino, Sadayuki Ito, Naoki Segi, Yuichi Miyairi, Yoshinori Morita, Shiro Imagama","doi":"10.18999/nagjms.86.3.392","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic spinal cord injury is characterized by immediate and irreversible tissue loss at the lesion site and secondary tissue damage. Secondary injuries should, in principle, be preventable, although no effective treatment options currently exist for patients with acute spinal cord injury. Traumatized tissues release excessive amounts of adenosine triphosphate and activate the P2X purinoceptor 7/pannexin1 complex, which is associated with secondary injury. We investigated the neuroprotective effects of the blue dye Brilliant Blue FCF, a selective inhibitor of P2X purinoceptor 7/pannexin1 that is approved for use as a food coloring, by comparing it with Brilliant Blue G, a P2X7 purinoceptor antagonist, and carbenoxolone, which attenuates P2X purinoceptor 7/pannexin1 function, in a rat spinal cord injury model. Brilliant Blue FCF administered early after spinal cord injury reduced spinal cord anatomical damage and improved motor recovery without apparent toxicity. Brilliant Blue G had the highest effect on this neurological recovery, with Brilliant Blue FCF and carbenoxolone having comparable improvement. Furthermore, Brilliant Blue FCF administration reduced local astrocytic and microglial activation and neutrophil infiltration, and no differences in these histological effects were observed between compounds. Thus, Brilliant Blue FCF protects spinal cord neurons after spinal cord injury and suppresses local inflammatory responses as well as Brilliant Blue G and carbenoxolone.</p>","PeriodicalId":49014,"journal":{"name":"Nagoya Journal of Medical Science","volume":"86 3","pages":"392-406"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439608/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adenosine triphosphate release inhibitors targeting pannexin1 improve recovery after spinal cord injury.\",\"authors\":\"Kazuaki Morishita, Hiroaki Nakashima, Masaaki Machino, Sadayuki Ito, Naoki Segi, Yuichi Miyairi, Yoshinori Morita, Shiro Imagama\",\"doi\":\"10.18999/nagjms.86.3.392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traumatic spinal cord injury is characterized by immediate and irreversible tissue loss at the lesion site and secondary tissue damage. Secondary injuries should, in principle, be preventable, although no effective treatment options currently exist for patients with acute spinal cord injury. Traumatized tissues release excessive amounts of adenosine triphosphate and activate the P2X purinoceptor 7/pannexin1 complex, which is associated with secondary injury. We investigated the neuroprotective effects of the blue dye Brilliant Blue FCF, a selective inhibitor of P2X purinoceptor 7/pannexin1 that is approved for use as a food coloring, by comparing it with Brilliant Blue G, a P2X7 purinoceptor antagonist, and carbenoxolone, which attenuates P2X purinoceptor 7/pannexin1 function, in a rat spinal cord injury model. Brilliant Blue FCF administered early after spinal cord injury reduced spinal cord anatomical damage and improved motor recovery without apparent toxicity. Brilliant Blue G had the highest effect on this neurological recovery, with Brilliant Blue FCF and carbenoxolone having comparable improvement. Furthermore, Brilliant Blue FCF administration reduced local astrocytic and microglial activation and neutrophil infiltration, and no differences in these histological effects were observed between compounds. Thus, Brilliant Blue FCF protects spinal cord neurons after spinal cord injury and suppresses local inflammatory responses as well as Brilliant Blue G and carbenoxolone.</p>\",\"PeriodicalId\":49014,\"journal\":{\"name\":\"Nagoya Journal of Medical Science\",\"volume\":\"86 3\",\"pages\":\"392-406\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439608/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Journal of Medical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.18999/nagjms.86.3.392\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Journal of Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.18999/nagjms.86.3.392","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Traumatic spinal cord injury is characterized by immediate and irreversible tissue loss at the lesion site and secondary tissue damage. Secondary injuries should, in principle, be preventable, although no effective treatment options currently exist for patients with acute spinal cord injury. Traumatized tissues release excessive amounts of adenosine triphosphate and activate the P2X purinoceptor 7/pannexin1 complex, which is associated with secondary injury. We investigated the neuroprotective effects of the blue dye Brilliant Blue FCF, a selective inhibitor of P2X purinoceptor 7/pannexin1 that is approved for use as a food coloring, by comparing it with Brilliant Blue G, a P2X7 purinoceptor antagonist, and carbenoxolone, which attenuates P2X purinoceptor 7/pannexin1 function, in a rat spinal cord injury model. Brilliant Blue FCF administered early after spinal cord injury reduced spinal cord anatomical damage and improved motor recovery without apparent toxicity. Brilliant Blue G had the highest effect on this neurological recovery, with Brilliant Blue FCF and carbenoxolone having comparable improvement. Furthermore, Brilliant Blue FCF administration reduced local astrocytic and microglial activation and neutrophil infiltration, and no differences in these histological effects were observed between compounds. Thus, Brilliant Blue FCF protects spinal cord neurons after spinal cord injury and suppresses local inflammatory responses as well as Brilliant Blue G and carbenoxolone.
期刊介绍:
The Journal publishes original papers in the areas of medical science and its related fields. Reviews, symposium reports, short communications, notes, case reports, hypothesis papers, medical image at a glance, video and announcements are also accepted.
Manuscripts should be in English. It is recommended that an English check of the manuscript by a competent and knowledgeable native speaker be completed before submission.