{"title":"白芷通过促进成骨细胞分化缓解模拟微重力诱导的骨质流失","authors":"Xuechao Liang, Shanfeng Jiang, Peihong Su, Chong Yin, Wei Jiang, Junhong Gao, Zhiyong Liu, Yuhang Li, Weisi Wang, Airong Qian, Ye Tian","doi":"10.1038/s41526-024-00433-0","DOIUrl":null,"url":null,"abstract":"<p><p>Bone loss caused by long-duration spaceflight seriously affects the skeletal health of astronauts. There are many shortcomings in currently available treatments for weightlessness-induced bone loss. The aim of this study was to evaluate the preventive effect of Angelica dahuricae Radix (AR) on simulated microgravity-induced bone loss. Here, we established a hind limb unloading (HLU) mouse model and treated HLU mice with AR (2 g/kg) for 4 weeks. Results indicated that AR significantly inhibited simulated microgravity-induced bone loss. In addition, the components in AR were analyzed using UPLC-MS/MS; results showed that a total of 224 compounds were detected in AR, which mainly contained 7 classes of components. Moreover, the network pharmacological predictions suggested that active ingredients of AR might act on PTGS2 to prevent bone loss. These results elucidate the efficacy of AR in preventing microgravity-induced bone loss and its potential for use in protecting the bone health of astronauts.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445575/pdf/","citationCount":"0","resultStr":"{\"title\":\"Angelicae dahuricae radix alleviates simulated microgravity induced bone loss by promoting osteoblast differentiation.\",\"authors\":\"Xuechao Liang, Shanfeng Jiang, Peihong Su, Chong Yin, Wei Jiang, Junhong Gao, Zhiyong Liu, Yuhang Li, Weisi Wang, Airong Qian, Ye Tian\",\"doi\":\"10.1038/s41526-024-00433-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone loss caused by long-duration spaceflight seriously affects the skeletal health of astronauts. There are many shortcomings in currently available treatments for weightlessness-induced bone loss. The aim of this study was to evaluate the preventive effect of Angelica dahuricae Radix (AR) on simulated microgravity-induced bone loss. Here, we established a hind limb unloading (HLU) mouse model and treated HLU mice with AR (2 g/kg) for 4 weeks. Results indicated that AR significantly inhibited simulated microgravity-induced bone loss. In addition, the components in AR were analyzed using UPLC-MS/MS; results showed that a total of 224 compounds were detected in AR, which mainly contained 7 classes of components. Moreover, the network pharmacological predictions suggested that active ingredients of AR might act on PTGS2 to prevent bone loss. These results elucidate the efficacy of AR in preventing microgravity-induced bone loss and its potential for use in protecting the bone health of astronauts.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445575/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-024-00433-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00433-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Angelicae dahuricae radix alleviates simulated microgravity induced bone loss by promoting osteoblast differentiation.
Bone loss caused by long-duration spaceflight seriously affects the skeletal health of astronauts. There are many shortcomings in currently available treatments for weightlessness-induced bone loss. The aim of this study was to evaluate the preventive effect of Angelica dahuricae Radix (AR) on simulated microgravity-induced bone loss. Here, we established a hind limb unloading (HLU) mouse model and treated HLU mice with AR (2 g/kg) for 4 weeks. Results indicated that AR significantly inhibited simulated microgravity-induced bone loss. In addition, the components in AR were analyzed using UPLC-MS/MS; results showed that a total of 224 compounds were detected in AR, which mainly contained 7 classes of components. Moreover, the network pharmacological predictions suggested that active ingredients of AR might act on PTGS2 to prevent bone loss. These results elucidate the efficacy of AR in preventing microgravity-induced bone loss and its potential for use in protecting the bone health of astronauts.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.