通过 Δ 机器学习将基于 DFT 的势能和力场提升到 CCSD(T) 水平的乙醇图解。

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2024-10-22 Epub Date: 2024-10-03 DOI:10.1021/acs.jctc.4c00977
Apurba Nandi, Priyanka Pandey, Paul L Houston, Chen Qu, Qi Yu, Riccardo Conte, Alexandre Tkatchenko, Joel M Bowman
{"title":"通过 Δ 机器学习将基于 DFT 的势能和力场提升到 CCSD(T) 水平的乙醇图解。","authors":"Apurba Nandi, Priyanka Pandey, Paul L Houston, Chen Qu, Qi Yu, Riccardo Conte, Alexandre Tkatchenko, Joel M Bowman","doi":"10.1021/acs.jctc.4c00977","DOIUrl":null,"url":null,"abstract":"<p><p>Progress in machine learning has facilitated the development of potentials that offer both the accuracy of first-principles techniques and vast increases in the speed of evaluation. Recently, Δ-machine learning has been used to elevate the quality of a potential energy surface (PES) based on low-level, e.g., density functional theory (DFT) energies and gradients to close to the gold-standard coupled cluster level of accuracy. We have demonstrated the success of this approach for molecules, ranging in size from H<sub>3</sub>O<sup>+</sup> to 15-atom acetyl-acetone and tropolone. These were all done using the B3LYP functional. Here, we investigate the generality of this approach for the PBE, M06, M06-2X, and PBE0 + MBD functionals, using ethanol as the example molecule. Linear regression with permutationally invariant polynomials is used to fit both low-level and correction PESs. These PESs are employed for standard RMSE analysis for training and test data sets, and then general fidelity tests such as energetics of stationary points, normal-mode frequencies, and torsional potentials are examined. We achieve similar improvements in all cases. Interestingly, we obtained significant improvement over DFT gradients where coupled cluster gradients were not used to correct the low-level PES. Finally, we present some results for correcting a recent molecular mechanics force field for ethanol and comment on the possible generality of this approach.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Δ-Machine Learning to Elevate DFT-Based Potentials and a Force Field to the CCSD(<i>T</i>) Level Illustrated for Ethanol.\",\"authors\":\"Apurba Nandi, Priyanka Pandey, Paul L Houston, Chen Qu, Qi Yu, Riccardo Conte, Alexandre Tkatchenko, Joel M Bowman\",\"doi\":\"10.1021/acs.jctc.4c00977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Progress in machine learning has facilitated the development of potentials that offer both the accuracy of first-principles techniques and vast increases in the speed of evaluation. Recently, Δ-machine learning has been used to elevate the quality of a potential energy surface (PES) based on low-level, e.g., density functional theory (DFT) energies and gradients to close to the gold-standard coupled cluster level of accuracy. We have demonstrated the success of this approach for molecules, ranging in size from H<sub>3</sub>O<sup>+</sup> to 15-atom acetyl-acetone and tropolone. These were all done using the B3LYP functional. Here, we investigate the generality of this approach for the PBE, M06, M06-2X, and PBE0 + MBD functionals, using ethanol as the example molecule. Linear regression with permutationally invariant polynomials is used to fit both low-level and correction PESs. These PESs are employed for standard RMSE analysis for training and test data sets, and then general fidelity tests such as energetics of stationary points, normal-mode frequencies, and torsional potentials are examined. We achieve similar improvements in all cases. Interestingly, we obtained significant improvement over DFT gradients where coupled cluster gradients were not used to correct the low-level PES. Finally, we present some results for correcting a recent molecular mechanics force field for ethanol and comment on the possible generality of this approach.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00977\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00977","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

机器学习的进步促进了势能面的开发,这些势能面既具有第一原理技术的准确性,又大大提高了评估速度。最近,Δ-机器学习已被用于提升基于低水平(如密度泛函理论(DFT)能量和梯度)的势能面(PES)的质量,使其接近黄金标准耦合簇的精度水平。我们已经证明了这种方法在从 H3O+ 到 15 原子乙酰丙酮和特罗波酮等大小不等的分子中的成功应用。这些都是使用 B3LYP 函数完成的。在此,我们以乙醇为例,研究这种方法在 PBE、M06、M06-2X 和 PBE0 + MBD 函数中的通用性。使用包覆不变多项式线性回归拟合低水平和校正 PES。这些 PES 用于训练和测试数据集的标准 RMSE 分析,然后进行一般保真度测试,如静止点能量、正模频率和扭转势。我们在所有情况下都取得了类似的改进。有趣的是,在不使用耦合簇梯度来校正低级 PES 的情况下,我们获得了比 DFT 梯度更显著的改进。最后,我们介绍了最近对乙醇分子力学力场进行修正的一些结果,并对这种方法可能具有的普遍性进行了评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Δ-Machine Learning to Elevate DFT-Based Potentials and a Force Field to the CCSD(T) Level Illustrated for Ethanol.

Progress in machine learning has facilitated the development of potentials that offer both the accuracy of first-principles techniques and vast increases in the speed of evaluation. Recently, Δ-machine learning has been used to elevate the quality of a potential energy surface (PES) based on low-level, e.g., density functional theory (DFT) energies and gradients to close to the gold-standard coupled cluster level of accuracy. We have demonstrated the success of this approach for molecules, ranging in size from H3O+ to 15-atom acetyl-acetone and tropolone. These were all done using the B3LYP functional. Here, we investigate the generality of this approach for the PBE, M06, M06-2X, and PBE0 + MBD functionals, using ethanol as the example molecule. Linear regression with permutationally invariant polynomials is used to fit both low-level and correction PESs. These PESs are employed for standard RMSE analysis for training and test data sets, and then general fidelity tests such as energetics of stationary points, normal-mode frequencies, and torsional potentials are examined. We achieve similar improvements in all cases. Interestingly, we obtained significant improvement over DFT gradients where coupled cluster gradients were not used to correct the low-level PES. Finally, we present some results for correcting a recent molecular mechanics force field for ethanol and comment on the possible generality of this approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Changing Your Martini Can Still Give You a Hangover. Minimum Tracking Linear Response Hubbard and Hund Corrected Density Functional Theory in CP2K. Δ-Machine Learning to Elevate DFT-Based Potentials and a Force Field to the CCSD(T) Level Illustrated for Ethanol. Comparison of Matrix Product State and Multiconfiguration Time-Dependent Hartree Methods for Nonadiabatic Dynamics of Exciton Dissociation. Response Matching for Generating Materials and Molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1