茴香醚-水和茴香醚-氨配合物的基态和激发态(S1):多构型对称性适配扰动理论 (SAPT) 研究。

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2024-10-10 Epub Date: 2024-10-01 DOI:10.1021/acs.jpca.4c04928
Agnieszka Krzemińska, Malgorzata Biczysko, Katarzyna Pernal, Michał Hapka
{"title":"茴香醚-水和茴香醚-氨配合物的基态和激发态(S1):多构型对称性适配扰动理论 (SAPT) 研究。","authors":"Agnieszka Krzemińska, Malgorzata Biczysko, Katarzyna Pernal, Michał Hapka","doi":"10.1021/acs.jpca.4c04928","DOIUrl":null,"url":null,"abstract":"<p><p>Binary complexes of anisole have long been considered paradigm systems for studying microsolvation in both the ground and electronically excited states. We report a symmetry-adapted perturbation theory (SAPT) analysis of intermolecular interactions in anisole-water and anisole-ammonia complexes within the framework of the multireference SAPT(CAS) method. Upon the S<sub>1</sub> ← S<sub>0</sub> electronic transition, the hydrogen bond in the anisole-water dimer is weakened, which SAPT(CAS) shows to be determined by changes in the electrostatic energy. As a result, the water complex becomes less stable in the relaxed S<sub>1</sub> state despite decreased Pauli repulsion. Stronger binding of the anisole-ammonia complex following electronic excitation is more nuanced and results from counteracting shifts in the repulsive (exchange) and attractive (electrostatic, induction and dispersion) forces. In particular, we show that the formation of additional binding N-H···π contacts in the relaxed S<sub>1</sub> geometry is possible due to reduced Pauli repulsion in the excited state. The SAPT(CAS) interaction energies have been validated against the coupled cluster (CC) results and experimentally determined shifts of the S<sub>1</sub> ← S<sub>0</sub> anisole band. While for the hydrogen-bonded anisole-water dimer SAPT(CAS) and CC shifts are in excellent agreement, for ammonia SAPT(CAS) is only qualitatively correct.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisole-Water and Anisole-Ammonia Complexes in Ground and Excited (S<sub>1</sub>) States: A Multiconfigurational Symmetry-Adapted Perturbation Theory (SAPT) Study.\",\"authors\":\"Agnieszka Krzemińska, Malgorzata Biczysko, Katarzyna Pernal, Michał Hapka\",\"doi\":\"10.1021/acs.jpca.4c04928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Binary complexes of anisole have long been considered paradigm systems for studying microsolvation in both the ground and electronically excited states. We report a symmetry-adapted perturbation theory (SAPT) analysis of intermolecular interactions in anisole-water and anisole-ammonia complexes within the framework of the multireference SAPT(CAS) method. Upon the S<sub>1</sub> ← S<sub>0</sub> electronic transition, the hydrogen bond in the anisole-water dimer is weakened, which SAPT(CAS) shows to be determined by changes in the electrostatic energy. As a result, the water complex becomes less stable in the relaxed S<sub>1</sub> state despite decreased Pauli repulsion. Stronger binding of the anisole-ammonia complex following electronic excitation is more nuanced and results from counteracting shifts in the repulsive (exchange) and attractive (electrostatic, induction and dispersion) forces. In particular, we show that the formation of additional binding N-H···π contacts in the relaxed S<sub>1</sub> geometry is possible due to reduced Pauli repulsion in the excited state. The SAPT(CAS) interaction energies have been validated against the coupled cluster (CC) results and experimentally determined shifts of the S<sub>1</sub> ← S<sub>0</sub> anisole band. While for the hydrogen-bonded anisole-water dimer SAPT(CAS) and CC shifts are in excellent agreement, for ammonia SAPT(CAS) is only qualitatively correct.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c04928\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c04928","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,苯甲醚的二元络合物一直被认为是研究基态和电子激发态微溶解的典范系统。我们报告了在多参考 SAPT(CAS)方法框架内对苯甲醚-水和苯甲醚-氨配合物中分子间相互作用的对称性适应扰动理论(SAPT)分析。在 S1 ← S0 电子转变过程中,苯甲醚-水二聚体中的氢键被削弱,SAPT(CAS) 显示这是由静电能的变化决定的。因此,尽管保利排斥减弱,水复合物在弛豫 S1 状态下的稳定性却降低了。在电子激发后,苯甲醚-氨复合物的结合力更强,这是由于排斥力(交换力)和吸引力(静电力、感应力和弥散力)发生了相互抵消的变化。我们特别指出,由于激发态的保利斥力减弱,在弛豫的 S1 几何结构中可能会形成额外的 N-H---π 结合接触。SAPT(CAS)相互作用能与耦合簇(CC)结果和实验测定的 S1 ← S0 茴香烯带的偏移进行了验证。对于以氢键结合的苯甲醚-水二聚体,SAPT(CAS)和 CC 的位移非常吻合,而对于氨,SAPT(CAS)只是定性正确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anisole-Water and Anisole-Ammonia Complexes in Ground and Excited (S1) States: A Multiconfigurational Symmetry-Adapted Perturbation Theory (SAPT) Study.

Binary complexes of anisole have long been considered paradigm systems for studying microsolvation in both the ground and electronically excited states. We report a symmetry-adapted perturbation theory (SAPT) analysis of intermolecular interactions in anisole-water and anisole-ammonia complexes within the framework of the multireference SAPT(CAS) method. Upon the S1 ← S0 electronic transition, the hydrogen bond in the anisole-water dimer is weakened, which SAPT(CAS) shows to be determined by changes in the electrostatic energy. As a result, the water complex becomes less stable in the relaxed S1 state despite decreased Pauli repulsion. Stronger binding of the anisole-ammonia complex following electronic excitation is more nuanced and results from counteracting shifts in the repulsive (exchange) and attractive (electrostatic, induction and dispersion) forces. In particular, we show that the formation of additional binding N-H···π contacts in the relaxed S1 geometry is possible due to reduced Pauli repulsion in the excited state. The SAPT(CAS) interaction energies have been validated against the coupled cluster (CC) results and experimentally determined shifts of the S1 ← S0 anisole band. While for the hydrogen-bonded anisole-water dimer SAPT(CAS) and CC shifts are in excellent agreement, for ammonia SAPT(CAS) is only qualitatively correct.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Electronic Structures and Spectra of Donor-Acceptor Conjugated Oligomers. Knowles Partitioning at the Multireference Level. Stochastic Resolution of Identity to CC2 for Large Systems: Ground State and Triplet Excitation Energy Calculations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1