{"title":"丘脑网状核电耦合网络的临界状态出现纺锤体振荡。","authors":"Shangyang Li, Chaoming Wang, Si Wu","doi":"10.1016/j.celrep.2024.114790","DOIUrl":null,"url":null,"abstract":"<p><p>Spindle oscillation is a waxing-and-waning neural oscillation observed in the brain, initiated at the thalamic reticular nucleus (TRN) and typically occurring at 7-15 Hz. Experiments have shown that in the adult brain, electrical synapses, rather than chemical synapses, dominate between TRN neurons, suggesting that the traditional view of spindle generation via chemical synapses may need reconsideration. Based on known experimental data, we develop a computational model of the TRN network, where heterogeneous neurons are connected by electrical synapses. The model shows that the interplay between synchronizing electrical synapses and desynchronizing heterogeneity leads to multiple synchronized clusters with slightly different oscillation frequencies whose summed-up activity produces spindle oscillation as seen in local field potentials. Our results suggest that during spindle oscillation, the network operates at the critical state, which is known for facilitating efficient information processing. This study provides insights into the underlying mechanism of spindle oscillation and its functional significance.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 10","pages":"114790"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spindle oscillations emerge at the critical state of electrically coupled networks in the thalamic reticular nucleus.\",\"authors\":\"Shangyang Li, Chaoming Wang, Si Wu\",\"doi\":\"10.1016/j.celrep.2024.114790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spindle oscillation is a waxing-and-waning neural oscillation observed in the brain, initiated at the thalamic reticular nucleus (TRN) and typically occurring at 7-15 Hz. Experiments have shown that in the adult brain, electrical synapses, rather than chemical synapses, dominate between TRN neurons, suggesting that the traditional view of spindle generation via chemical synapses may need reconsideration. Based on known experimental data, we develop a computational model of the TRN network, where heterogeneous neurons are connected by electrical synapses. The model shows that the interplay between synchronizing electrical synapses and desynchronizing heterogeneity leads to multiple synchronized clusters with slightly different oscillation frequencies whose summed-up activity produces spindle oscillation as seen in local field potentials. Our results suggest that during spindle oscillation, the network operates at the critical state, which is known for facilitating efficient information processing. This study provides insights into the underlying mechanism of spindle oscillation and its functional significance.</p>\",\"PeriodicalId\":9798,\"journal\":{\"name\":\"Cell reports\",\"volume\":\"43 10\",\"pages\":\"114790\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.celrep.2024.114790\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114790","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Spindle oscillations emerge at the critical state of electrically coupled networks in the thalamic reticular nucleus.
Spindle oscillation is a waxing-and-waning neural oscillation observed in the brain, initiated at the thalamic reticular nucleus (TRN) and typically occurring at 7-15 Hz. Experiments have shown that in the adult brain, electrical synapses, rather than chemical synapses, dominate between TRN neurons, suggesting that the traditional view of spindle generation via chemical synapses may need reconsideration. Based on known experimental data, we develop a computational model of the TRN network, where heterogeneous neurons are connected by electrical synapses. The model shows that the interplay between synchronizing electrical synapses and desynchronizing heterogeneity leads to multiple synchronized clusters with slightly different oscillation frequencies whose summed-up activity produces spindle oscillation as seen in local field potentials. Our results suggest that during spindle oscillation, the network operates at the critical state, which is known for facilitating efficient information processing. This study provides insights into the underlying mechanism of spindle oscillation and its functional significance.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.