碲纳米晶体手性和非手性形状图的实验测定。

IF 2.8 4区 化学 Q2 CHEMISTRY, ANALYTICAL Chirality Pub Date : 2024-10-01 DOI:10.1002/chir.23716
Daniel Vasiliev, Shay Tirosh, Assaf Ben-Moshe
{"title":"碲纳米晶体手性和非手性形状图的实验测定。","authors":"Daniel Vasiliev,&nbsp;Shay Tirosh,&nbsp;Assaf Ben-Moshe","doi":"10.1002/chir.23716","DOIUrl":null,"url":null,"abstract":"<p>The interface between chirality and crystallization and mechanisms by which chirality propagates from crystal structure to overall shapes of crystals are a key topic in crystallography and stereochemistry. Recently, nanocrystals attracted attention as useful model systems for this kind of studies. Specifically, tellurium nanocrystals have been used to address questions on relations between chirality of the crystal structure and that of the overall shape. Previous studies of this system did not offer a comprehensive shape diagram and did not survey all the factors that determine whether shapes that form are chiral or not. In the current report, the distribution of chiral and achiral shapes in this system as a function of different physical and chemical parameters is determined experimentally. It is shown that there is a common logic for formation of chiral shapes, that is, growth at conditions that favor the growth of more reactive nuclei. The experiments also reveal more morphologies than previously encountered, suggesting that a systematic change of conditions in nanocrystal growth is key for identifying morphologies that exist only in a narrow range of conditions.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/chir.23716","citationCount":"0","resultStr":"{\"title\":\"Experimental Determination of the Chiral and Achiral Shape Diagrams of Tellurium Nanocrystals\",\"authors\":\"Daniel Vasiliev,&nbsp;Shay Tirosh,&nbsp;Assaf Ben-Moshe\",\"doi\":\"10.1002/chir.23716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The interface between chirality and crystallization and mechanisms by which chirality propagates from crystal structure to overall shapes of crystals are a key topic in crystallography and stereochemistry. Recently, nanocrystals attracted attention as useful model systems for this kind of studies. Specifically, tellurium nanocrystals have been used to address questions on relations between chirality of the crystal structure and that of the overall shape. Previous studies of this system did not offer a comprehensive shape diagram and did not survey all the factors that determine whether shapes that form are chiral or not. In the current report, the distribution of chiral and achiral shapes in this system as a function of different physical and chemical parameters is determined experimentally. It is shown that there is a common logic for formation of chiral shapes, that is, growth at conditions that favor the growth of more reactive nuclei. The experiments also reveal more morphologies than previously encountered, suggesting that a systematic change of conditions in nanocrystal growth is key for identifying morphologies that exist only in a narrow range of conditions.</p>\",\"PeriodicalId\":10170,\"journal\":{\"name\":\"Chirality\",\"volume\":\"36 10\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/chir.23716\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chirality\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/chir.23716\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chirality","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/chir.23716","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

手性与结晶之间的界面以及手性从晶体结构传播到晶体整体形状的机制是晶体学和立体化学的一个重要课题。最近,纳米晶体作为此类研究的有用模型系统引起了关注。具体而言,碲纳米晶体已被用于解决晶体结构的手性与整体形状的手性之间的关系问题。以前对该系统的研究没有提供全面的形状图,也没有调查决定形成的形状是否具有手性的所有因素。本报告通过实验确定了该体系中手性和非手性形状的分布与不同物理和化学参数的关系。实验表明,手性形状的形成有一个共同的逻辑,即在有利于活性更强的原子核生长的条件下生长。实验还揭示了比以前遇到的更多的形态,表明系统地改变纳米晶体生长的条件是识别只存在于狭窄条件范围内的形态的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Determination of the Chiral and Achiral Shape Diagrams of Tellurium Nanocrystals

The interface between chirality and crystallization and mechanisms by which chirality propagates from crystal structure to overall shapes of crystals are a key topic in crystallography and stereochemistry. Recently, nanocrystals attracted attention as useful model systems for this kind of studies. Specifically, tellurium nanocrystals have been used to address questions on relations between chirality of the crystal structure and that of the overall shape. Previous studies of this system did not offer a comprehensive shape diagram and did not survey all the factors that determine whether shapes that form are chiral or not. In the current report, the distribution of chiral and achiral shapes in this system as a function of different physical and chemical parameters is determined experimentally. It is shown that there is a common logic for formation of chiral shapes, that is, growth at conditions that favor the growth of more reactive nuclei. The experiments also reveal more morphologies than previously encountered, suggesting that a systematic change of conditions in nanocrystal growth is key for identifying morphologies that exist only in a narrow range of conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chirality
Chirality 医学-分析化学
CiteScore
4.40
自引率
5.00%
发文量
124
审稿时长
1 months
期刊介绍: The main aim of the journal is to publish original contributions of scientific work on the role of chirality in chemistry and biochemistry in respect to biological, chemical, materials, pharmacological, spectroscopic and physical properties. Papers on the chemistry (physiochemical, preparative synthetic, and analytical), physics, pharmacology, clinical pharmacology, toxicology, and other biological aspects of chiral molecules will be published.
期刊最新文献
On the (Im)possible Interplays Between Natural and Magnetic Optical Activity in Chiral Samples Chirooptical 2,2′-Dimethoxybiphenyl Crystals Generated From Suzuki–Miyaura Coupling Reaction Catalyzed by Pd-Loaded Chiral Silica Voltammetric Sensor for Naproxen Enantiomers Based on a Paste Electrode Modified With a Chiral Nickel(II) Complex Principles for Stereoselective Separation of Chiral Drug Compounds Enantiomers and Diastereomers in Pharmaceuticals and Biopharmaceuticals Using Liquid Chromatography A Review on Carbazole and Its Derivatives as Anticancer Agents From 2013 to 2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1