基于患者的多层次转录组探索凸显了胶质母细胞瘤中的相关趋化因子和趋化因子受体轴。

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-11-01 DOI:10.1016/j.compbiomed.2024.109197
Giulia D'Uonnolo , Damla Isci , Bakhtiyor Nosirov , Amandine Kuppens , May Wantz , Petr V. Nazarov , Anna Golebiewska , Bernard Rogister , Andy Chevigné , Virginie Neirinckx , Martyna Szpakowska
{"title":"基于患者的多层次转录组探索凸显了胶质母细胞瘤中的相关趋化因子和趋化因子受体轴。","authors":"Giulia D'Uonnolo ,&nbsp;Damla Isci ,&nbsp;Bakhtiyor Nosirov ,&nbsp;Amandine Kuppens ,&nbsp;May Wantz ,&nbsp;Petr V. Nazarov ,&nbsp;Anna Golebiewska ,&nbsp;Bernard Rogister ,&nbsp;Andy Chevigné ,&nbsp;Virginie Neirinckx ,&nbsp;Martyna Szpakowska","doi":"10.1016/j.compbiomed.2024.109197","DOIUrl":null,"url":null,"abstract":"<div><div>Chemokines and their receptors form a complex interaction network, crucial for precise leukocyte positioning and trafficking. In cancer, they promote malignant cell proliferation and survival but are also critical for immune cell infiltration in the tumor microenvironment. Glioblastoma (GBM) is the most common and lethal brain tumor, characterized by an immunosuppressive TME, with restricted immune cell infiltration. A better understanding of chemokine-receptor interactions is therefore essential for improving tumor immunogenicity. In this study, we assessed the expression of all human chemokines in adult-type diffuse gliomas, with particular focus on GBM, based on patient-derived samples. Publicly available bulk RNA sequencing datasets allowed us to identify the chemokines most abundantly expressed in GBM, with regard to disease severity and across different tumor subregions. To gain insight into the chemokines–receptor network at the single cell resolution, we explored GBmap, a curated resource integrating multiple scRNAseq datasets from different published studies. Our study constitutes the first patient–based handbook highlighting the relevant chemokine–receptor crosstalks, which are of significant interest in the perspective of a therapeutic modulation of the TME in GBM.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"182 ","pages":"Article 109197"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patient-based multilevel transcriptome exploration highlights relevant chemokines and chemokine receptor axes in glioblastoma\",\"authors\":\"Giulia D'Uonnolo ,&nbsp;Damla Isci ,&nbsp;Bakhtiyor Nosirov ,&nbsp;Amandine Kuppens ,&nbsp;May Wantz ,&nbsp;Petr V. Nazarov ,&nbsp;Anna Golebiewska ,&nbsp;Bernard Rogister ,&nbsp;Andy Chevigné ,&nbsp;Virginie Neirinckx ,&nbsp;Martyna Szpakowska\",\"doi\":\"10.1016/j.compbiomed.2024.109197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chemokines and their receptors form a complex interaction network, crucial for precise leukocyte positioning and trafficking. In cancer, they promote malignant cell proliferation and survival but are also critical for immune cell infiltration in the tumor microenvironment. Glioblastoma (GBM) is the most common and lethal brain tumor, characterized by an immunosuppressive TME, with restricted immune cell infiltration. A better understanding of chemokine-receptor interactions is therefore essential for improving tumor immunogenicity. In this study, we assessed the expression of all human chemokines in adult-type diffuse gliomas, with particular focus on GBM, based on patient-derived samples. Publicly available bulk RNA sequencing datasets allowed us to identify the chemokines most abundantly expressed in GBM, with regard to disease severity and across different tumor subregions. To gain insight into the chemokines–receptor network at the single cell resolution, we explored GBmap, a curated resource integrating multiple scRNAseq datasets from different published studies. Our study constitutes the first patient–based handbook highlighting the relevant chemokine–receptor crosstalks, which are of significant interest in the perspective of a therapeutic modulation of the TME in GBM.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"182 \",\"pages\":\"Article 109197\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482524012824\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524012824","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

趋化因子及其受体形成了一个复杂的相互作用网络,对白细胞的精确定位和迁移至关重要。在癌症中,它们促进恶性细胞的增殖和存活,同时也是肿瘤微环境中免疫细胞浸润的关键。胶质母细胞瘤(GBM)是最常见、最致命的脑肿瘤,其特点是具有免疫抑制作用的TME,免疫细胞浸润受限。因此,更好地了解趋化因子与受体之间的相互作用对于改善肿瘤的免疫原性至关重要。在这项研究中,我们根据患者样本评估了所有人类趋化因子在成人型弥漫性胶质瘤中的表达情况,尤其关注GBM。通过公开的大容量 RNA 测序数据集,我们确定了在 GBM 中表达最丰富的趋化因子,这些趋化因子与疾病的严重程度和不同的肿瘤亚区域有关。为了深入了解单细胞分辨率的趋化因子-受体网络,我们探索了 GBmap,这是一个整合了来自不同已发表研究的多个 scRNAseq 数据集的资源库。我们的研究构成了第一本以患者为基础的手册,其中强调了相关的趋化因子-受体串联,这对治疗调控 GBM 的 TME 具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Patient-based multilevel transcriptome exploration highlights relevant chemokines and chemokine receptor axes in glioblastoma
Chemokines and their receptors form a complex interaction network, crucial for precise leukocyte positioning and trafficking. In cancer, they promote malignant cell proliferation and survival but are also critical for immune cell infiltration in the tumor microenvironment. Glioblastoma (GBM) is the most common and lethal brain tumor, characterized by an immunosuppressive TME, with restricted immune cell infiltration. A better understanding of chemokine-receptor interactions is therefore essential for improving tumor immunogenicity. In this study, we assessed the expression of all human chemokines in adult-type diffuse gliomas, with particular focus on GBM, based on patient-derived samples. Publicly available bulk RNA sequencing datasets allowed us to identify the chemokines most abundantly expressed in GBM, with regard to disease severity and across different tumor subregions. To gain insight into the chemokines–receptor network at the single cell resolution, we explored GBmap, a curated resource integrating multiple scRNAseq datasets from different published studies. Our study constitutes the first patient–based handbook highlighting the relevant chemokine–receptor crosstalks, which are of significant interest in the perspective of a therapeutic modulation of the TME in GBM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
An adaptive enhanced human memory algorithm for multi-level image segmentation for pathological lung cancer images. Integrating multimodal learning for improved vital health parameter estimation. Riemannian manifold-based geometric clustering of continuous glucose monitoring to improve personalized diabetes management. Transformative artificial intelligence in gastric cancer: Advancements in diagnostic techniques. Artificial intelligence and deep learning algorithms for epigenetic sequence analysis: A review for epigeneticists and AI experts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1