组织病理学驱动的前列腺癌识别:具有 CLAHE 和 GLCM 见解的 VBIR 方法。

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2024-11-01 Epub Date: 2024-10-02 DOI:10.1016/j.compbiomed.2024.109213
Pramod K B Rangaiah, B P Pradeep Kumar, Robin Augustine
{"title":"组织病理学驱动的前列腺癌识别:具有 CLAHE 和 GLCM 见解的 VBIR 方法。","authors":"Pramod K B Rangaiah, B P Pradeep Kumar, Robin Augustine","doi":"10.1016/j.compbiomed.2024.109213","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient extraction and analysis of histopathological images are crucial for accurate medical diagnoses, particularly for prostate cancer. This research enhances histopathological image reclamation by integrating Visual-Based Image Reclamation (VBIR) techniques with contrast-limited adaptive Histogram Equalization (CLAHE) and the Gray-Level Co-occurrence Matrix (GLCM) algorithm. The proposed method leverages CLAHE to improve image contrast and visibility, crucial for regions with varying illumination, and employs a non-linear Support Vector Machine (SVM) to incorporate GLCM features. Our approach achieved a notable success rate of 89.6%, demonstrating significant improvement in image analysis. The average execution time for matched tissues was 41.23 s (standard deviation 36.87 s), and for unmatched tissues, 21.22 s (standard deviation 29.18 s). These results underscore the method's efficiency and reliability in processing histopathological images. The findings from this study highlight the potential of our method to enhance image reclamation processes, paving the way for further research and advancements in medical image analysis. The superior performance of our approach signifies its capability to significantly improve histopathological image analysis, contributing to more accurate and efficient diagnostic practices.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"182 ","pages":"109213"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histopathology-driven prostate cancer identification: A VBIR approach with CLAHE and GLCM insights.\",\"authors\":\"Pramod K B Rangaiah, B P Pradeep Kumar, Robin Augustine\",\"doi\":\"10.1016/j.compbiomed.2024.109213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Efficient extraction and analysis of histopathological images are crucial for accurate medical diagnoses, particularly for prostate cancer. This research enhances histopathological image reclamation by integrating Visual-Based Image Reclamation (VBIR) techniques with contrast-limited adaptive Histogram Equalization (CLAHE) and the Gray-Level Co-occurrence Matrix (GLCM) algorithm. The proposed method leverages CLAHE to improve image contrast and visibility, crucial for regions with varying illumination, and employs a non-linear Support Vector Machine (SVM) to incorporate GLCM features. Our approach achieved a notable success rate of 89.6%, demonstrating significant improvement in image analysis. The average execution time for matched tissues was 41.23 s (standard deviation 36.87 s), and for unmatched tissues, 21.22 s (standard deviation 29.18 s). These results underscore the method's efficiency and reliability in processing histopathological images. The findings from this study highlight the potential of our method to enhance image reclamation processes, paving the way for further research and advancements in medical image analysis. The superior performance of our approach signifies its capability to significantly improve histopathological image analysis, contributing to more accurate and efficient diagnostic practices.</p>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"182 \",\"pages\":\"109213\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiomed.2024.109213\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109213","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

组织病理学图像的高效提取和分析对于准确的医疗诊断至关重要,尤其是前列腺癌。这项研究通过将基于视觉的图像重组(VBIR)技术与对比度限制自适应直方图均衡(CLAHE)和灰度共现矩阵(GLCM)算法相结合,增强了组织病理学图像重组的能力。所提出的方法利用 CLAHE 来提高图像对比度和可见度(这对光照变化的区域至关重要),并采用非线性支持向量机 (SVM) 来整合 GLCM 特征。我们的方法取得了 89.6% 的显著成功率,在图像分析方面取得了重大改进。匹配组织的平均执行时间为 41.23 秒(标准偏差为 36.87 秒),未匹配组织的平均执行时间为 21.22 秒(标准偏差为 29.18 秒)。这些结果凸显了该方法在处理组织病理学图像时的效率和可靠性。这项研究的结果凸显了我们的方法在增强图像再生过程中的潜力,为医学图像分析的进一步研究和进步铺平了道路。我们的方法性能优越,表明它有能力显著改善组织病理学图像分析,为更准确、更高效的诊断实践做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Histopathology-driven prostate cancer identification: A VBIR approach with CLAHE and GLCM insights.

Efficient extraction and analysis of histopathological images are crucial for accurate medical diagnoses, particularly for prostate cancer. This research enhances histopathological image reclamation by integrating Visual-Based Image Reclamation (VBIR) techniques with contrast-limited adaptive Histogram Equalization (CLAHE) and the Gray-Level Co-occurrence Matrix (GLCM) algorithm. The proposed method leverages CLAHE to improve image contrast and visibility, crucial for regions with varying illumination, and employs a non-linear Support Vector Machine (SVM) to incorporate GLCM features. Our approach achieved a notable success rate of 89.6%, demonstrating significant improvement in image analysis. The average execution time for matched tissues was 41.23 s (standard deviation 36.87 s), and for unmatched tissues, 21.22 s (standard deviation 29.18 s). These results underscore the method's efficiency and reliability in processing histopathological images. The findings from this study highlight the potential of our method to enhance image reclamation processes, paving the way for further research and advancements in medical image analysis. The superior performance of our approach signifies its capability to significantly improve histopathological image analysis, contributing to more accurate and efficient diagnostic practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
An adaptive enhanced human memory algorithm for multi-level image segmentation for pathological lung cancer images. Integrating multimodal learning for improved vital health parameter estimation. Riemannian manifold-based geometric clustering of continuous glucose monitoring to improve personalized diabetes management. Transformative artificial intelligence in gastric cancer: Advancements in diagnostic techniques. Artificial intelligence and deep learning algorithms for epigenetic sequence analysis: A review for epigeneticists and AI experts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1