Aude Boulay, Emmanuel Quevarec, Isabelle Malet, Giuseppe Nicastro, Célia Chamontin, Suzon Perrin, Corinne Henriquet, Martine Pugnière, Valérie Courgnaud, Mickaël Blaise, Anne-Geneviève Marcelin, Ian A Taylor, Laurent Chaloin, Nathalie J Arhel
{"title":"能特异性阻断 HIV-1 核导入的新型帽状体靶向抑制剂。","authors":"Aude Boulay, Emmanuel Quevarec, Isabelle Malet, Giuseppe Nicastro, Célia Chamontin, Suzon Perrin, Corinne Henriquet, Martine Pugnière, Valérie Courgnaud, Mickaël Blaise, Anne-Geneviève Marcelin, Ian A Taylor, Laurent Chaloin, Nathalie J Arhel","doi":"10.1038/s44321-024-00143-w","DOIUrl":null,"url":null,"abstract":"<p><p>HIV-1 capsids cross nuclear pore complexes (NPCs) by engaging with the nuclear import machinery. To identify compounds that inhibit HIV-1 nuclear import, we screened drugs in silico on a three-dimensional model of a CA hexamer bound by Transportin-1 (TRN-1). Among hits, compound H27 inhibited HIV-1 with a low micromolar IC<sub>50</sub>. Unlike other CA-targeting compounds, H27 did not alter CA assembly or disassembly, inhibited nuclear import specifically, and retained antiviral activity against PF74- and Lenacapavir-resistant mutants. The differential sensitivity of divergent primate lentiviral capsids, capsid stability and H27 escape mutants, together with structural analyses, suggest that H27 makes multiple low affinity contacts with assembled capsid. Interaction experiments indicate that H27 may act by preventing CA from engaging with components of the NPC machinery such as TRN-1. H27 exhibited good metabolic stability in vivo and was efficient against different subtypes and circulating recombinant forms from treatment-naïve patients as well as strains resistant to the four main classes of antiretroviral drugs. This work identifies compounds that demonstrate a novel mechanism of action by specifically blocking HIV-1 nuclear import.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"2918-2945"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555092/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new class of capsid-targeting inhibitors that specifically block HIV-1 nuclear import.\",\"authors\":\"Aude Boulay, Emmanuel Quevarec, Isabelle Malet, Giuseppe Nicastro, Célia Chamontin, Suzon Perrin, Corinne Henriquet, Martine Pugnière, Valérie Courgnaud, Mickaël Blaise, Anne-Geneviève Marcelin, Ian A Taylor, Laurent Chaloin, Nathalie J Arhel\",\"doi\":\"10.1038/s44321-024-00143-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>HIV-1 capsids cross nuclear pore complexes (NPCs) by engaging with the nuclear import machinery. To identify compounds that inhibit HIV-1 nuclear import, we screened drugs in silico on a three-dimensional model of a CA hexamer bound by Transportin-1 (TRN-1). Among hits, compound H27 inhibited HIV-1 with a low micromolar IC<sub>50</sub>. Unlike other CA-targeting compounds, H27 did not alter CA assembly or disassembly, inhibited nuclear import specifically, and retained antiviral activity against PF74- and Lenacapavir-resistant mutants. The differential sensitivity of divergent primate lentiviral capsids, capsid stability and H27 escape mutants, together with structural analyses, suggest that H27 makes multiple low affinity contacts with assembled capsid. Interaction experiments indicate that H27 may act by preventing CA from engaging with components of the NPC machinery such as TRN-1. H27 exhibited good metabolic stability in vivo and was efficient against different subtypes and circulating recombinant forms from treatment-naïve patients as well as strains resistant to the four main classes of antiretroviral drugs. This work identifies compounds that demonstrate a novel mechanism of action by specifically blocking HIV-1 nuclear import.</p>\",\"PeriodicalId\":11597,\"journal\":{\"name\":\"EMBO Molecular Medicine\",\"volume\":\" \",\"pages\":\"2918-2945\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555092/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s44321-024-00143-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-024-00143-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
HIV-1 包囊通过与核导入机制结合穿过核孔复合体(NPC)。为了找出能抑制 HIV-1 核导入的化合物,我们在运输蛋白-1(TRN-1)结合的 CA 六聚体三维模型上进行了药物筛选。其中,化合物 H27 以较低的微摩尔 IC50 值抑制了 HIV-1。与其他 CA 靶向化合物不同的是,H27 不会改变 CA 的组装或分解,能特异性地抑制核导入,并对 PF74 和来那卡韦耐药突变体保持抗病毒活性。不同灵长类慢病毒噬菌体的不同敏感性、噬菌体稳定性和 H27 逃逸突变体以及结构分析表明,H27 与组装的噬菌体有多种低亲和力接触。相互作用实验表明,H27 可能通过阻止 CA 与 TRN-1 等 NPC 机制成分接触而发挥作用。H27 在体内表现出良好的代谢稳定性,对不同亚型、来自治疗无效患者的循环重组型以及对四大类抗逆转录病毒药物耐药的菌株均有效。这项工作确定了通过特异性阻断 HIV-1 核导入而展示新型作用机制的化合物。
A new class of capsid-targeting inhibitors that specifically block HIV-1 nuclear import.
HIV-1 capsids cross nuclear pore complexes (NPCs) by engaging with the nuclear import machinery. To identify compounds that inhibit HIV-1 nuclear import, we screened drugs in silico on a three-dimensional model of a CA hexamer bound by Transportin-1 (TRN-1). Among hits, compound H27 inhibited HIV-1 with a low micromolar IC50. Unlike other CA-targeting compounds, H27 did not alter CA assembly or disassembly, inhibited nuclear import specifically, and retained antiviral activity against PF74- and Lenacapavir-resistant mutants. The differential sensitivity of divergent primate lentiviral capsids, capsid stability and H27 escape mutants, together with structural analyses, suggest that H27 makes multiple low affinity contacts with assembled capsid. Interaction experiments indicate that H27 may act by preventing CA from engaging with components of the NPC machinery such as TRN-1. H27 exhibited good metabolic stability in vivo and was efficient against different subtypes and circulating recombinant forms from treatment-naïve patients as well as strains resistant to the four main classes of antiretroviral drugs. This work identifies compounds that demonstrate a novel mechanism of action by specifically blocking HIV-1 nuclear import.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)