通过昼夜节律基因上调降解E2F1和c-Myc,定期运动可抑制脂肪变性相关肝癌的发展。

IF 1.3 4区 生物学 Q4 CELL BIOLOGY Genes to Cells Pub Date : 2024-10-02 DOI:10.1111/gtc.13161
Vu Thuong Huyen, Kanae Echizen, Ryota Yamagishi, Miho Kumagai, Yoshiki Nonaka, Takahiro Kodama, Tatsuya Ando, Megumu Yano, Naoki Takada, Masaki Takasugi, Fumitaka Kamachi, Naoko Ohtani
{"title":"通过昼夜节律基因上调降解E2F1和c-Myc,定期运动可抑制脂肪变性相关肝癌的发展。","authors":"Vu Thuong Huyen,&nbsp;Kanae Echizen,&nbsp;Ryota Yamagishi,&nbsp;Miho Kumagai,&nbsp;Yoshiki Nonaka,&nbsp;Takahiro Kodama,&nbsp;Tatsuya Ando,&nbsp;Megumu Yano,&nbsp;Naoki Takada,&nbsp;Masaki Takasugi,&nbsp;Fumitaka Kamachi,&nbsp;Naoko Ohtani","doi":"10.1111/gtc.13161","DOIUrl":null,"url":null,"abstract":"<p>Regular exercise is believed to suppress cancer progression. However, the precise molecular mechanisms by which exercise prevents cancer development remain unclear. In this study, using a steatosis-associated liver cancer mouse model, we found that regular exercise at a speed of 18 m/min for 20 min daily suppressed liver cancer development. To explore the underlying mechanisms, we examined the gene expression profiles in the livers of the exercise and non-exercise groups. The expressions of circadian genes, such as Per1 and Cry2, were upregulated in the exercise group. As circadian rhythm disruption is known to cause various diseases, including cancer, improving circadian rhythm through exercise could contribute to cancer prevention. We further found that the expression of a series of E2F1 and c-Myc target genes that directly affect the proliferation of cancer cells was downregulated in the exercise group. However, the expression of E2F1 and c-Myc was transcriptionally unchanged but degraded at the post-translational level by exercise. Cry2, which is regulated by the Skp1-Cul1-FBXL3 (SCF<sup>FBXL3</sup>) ubiquitin ligase complex by binding to FBXL3, can form a complex with E2F1 and c-Myc, which we think is the mechanism to degrade them. Our study revealed a previously unknown mechanism by which exercise prevents cancer development.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regular exercise suppresses steatosis-associated liver cancer development by degrading E2F1 and c-Myc via circadian gene upregulation\",\"authors\":\"Vu Thuong Huyen,&nbsp;Kanae Echizen,&nbsp;Ryota Yamagishi,&nbsp;Miho Kumagai,&nbsp;Yoshiki Nonaka,&nbsp;Takahiro Kodama,&nbsp;Tatsuya Ando,&nbsp;Megumu Yano,&nbsp;Naoki Takada,&nbsp;Masaki Takasugi,&nbsp;Fumitaka Kamachi,&nbsp;Naoko Ohtani\",\"doi\":\"10.1111/gtc.13161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Regular exercise is believed to suppress cancer progression. However, the precise molecular mechanisms by which exercise prevents cancer development remain unclear. In this study, using a steatosis-associated liver cancer mouse model, we found that regular exercise at a speed of 18 m/min for 20 min daily suppressed liver cancer development. To explore the underlying mechanisms, we examined the gene expression profiles in the livers of the exercise and non-exercise groups. The expressions of circadian genes, such as Per1 and Cry2, were upregulated in the exercise group. As circadian rhythm disruption is known to cause various diseases, including cancer, improving circadian rhythm through exercise could contribute to cancer prevention. We further found that the expression of a series of E2F1 and c-Myc target genes that directly affect the proliferation of cancer cells was downregulated in the exercise group. However, the expression of E2F1 and c-Myc was transcriptionally unchanged but degraded at the post-translational level by exercise. Cry2, which is regulated by the Skp1-Cul1-FBXL3 (SCF<sup>FBXL3</sup>) ubiquitin ligase complex by binding to FBXL3, can form a complex with E2F1 and c-Myc, which we think is the mechanism to degrade them. Our study revealed a previously unknown mechanism by which exercise prevents cancer development.</p>\",\"PeriodicalId\":12742,\"journal\":{\"name\":\"Genes to Cells\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes to Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13161\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes to Cells","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13161","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

经常锻炼被认为可以抑制癌症的发展。然而,运动预防癌症发展的确切分子机制仍不清楚。在这项研究中,我们利用脂肪变性相关肝癌小鼠模型发现,每天以 18 米/分钟的速度进行 20 分钟的有规律运动能抑制肝癌的发展。为了探索其潜在机制,我们研究了运动组和非运动组肝脏中的基因表达谱。在运动组中,Per1 和 Cry2 等昼夜节律基因的表达上调。众所周知,昼夜节律紊乱会导致包括癌症在内的多种疾病,因此通过运动改善昼夜节律有助于预防癌症。我们进一步发现,运动组中一系列直接影响癌细胞增殖的 E2F1 和 c-Myc 靶基因的表达下调。然而,E2F1和c-Myc的表达在转录水平上没有变化,但在翻译后水平上却因运动而降解。Cry2受Skp1-Cul1-FBXL3(SCFFBXL3)泛素连接酶复合物的调控,通过与FBXL3结合,可与E2F1和c-Myc形成复合物,我们认为这就是降解它们的机制。我们的研究揭示了运动预防癌症发展的一种未知机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regular exercise suppresses steatosis-associated liver cancer development by degrading E2F1 and c-Myc via circadian gene upregulation

Regular exercise is believed to suppress cancer progression. However, the precise molecular mechanisms by which exercise prevents cancer development remain unclear. In this study, using a steatosis-associated liver cancer mouse model, we found that regular exercise at a speed of 18 m/min for 20 min daily suppressed liver cancer development. To explore the underlying mechanisms, we examined the gene expression profiles in the livers of the exercise and non-exercise groups. The expressions of circadian genes, such as Per1 and Cry2, were upregulated in the exercise group. As circadian rhythm disruption is known to cause various diseases, including cancer, improving circadian rhythm through exercise could contribute to cancer prevention. We further found that the expression of a series of E2F1 and c-Myc target genes that directly affect the proliferation of cancer cells was downregulated in the exercise group. However, the expression of E2F1 and c-Myc was transcriptionally unchanged but degraded at the post-translational level by exercise. Cry2, which is regulated by the Skp1-Cul1-FBXL3 (SCFFBXL3) ubiquitin ligase complex by binding to FBXL3, can form a complex with E2F1 and c-Myc, which we think is the mechanism to degrade them. Our study revealed a previously unknown mechanism by which exercise prevents cancer development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes to Cells
Genes to Cells 生物-细胞生物学
CiteScore
3.40
自引率
0.00%
发文量
71
审稿时长
3 months
期刊介绍: Genes to Cells provides an international forum for the publication of papers describing important aspects of molecular and cellular biology. The journal aims to present papers that provide conceptual advance in the relevant field. Particular emphasis will be placed on work aimed at understanding the basic mechanisms underlying biological events.
期刊最新文献
Chromosomal rearrangements associated with SMC5/6 deficiency in DNA replication. Issue Information The fly brain lands in Tokyo: A report on the 3rd Asia Pacific Drosophila Neurobiology Conference. Immunotherapy-induced reprogramming of cancer-associated fibroblasts can promote tumor progression. Mrc1Claspin is essential for heterochromatin maintenance in Schizosaccharomyces pombe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1