利用动作识别神经网络自动检测婴儿痉挛。

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Neural Systems and Rehabilitation Engineering Pub Date : 2024-10-02 DOI:10.1109/TNSRE.2024.3472088
Samuel Diop;Nouha Essid;François Jouen;Jean Bergounioux;Imen Trabelsi
{"title":"利用动作识别神经网络自动检测婴儿痉挛。","authors":"Samuel Diop;Nouha Essid;François Jouen;Jean Bergounioux;Imen Trabelsi","doi":"10.1109/TNSRE.2024.3472088","DOIUrl":null,"url":null,"abstract":"Infantile spasms are a severe epileptic syndrome characterized by short muscular contractions lasting from 0.5 to 2 seconds. They are often misdiagnosed due to their atypical presentation, and treatment is frequently delayed, leading to stagnation or regression in psychomotor development and significant cognitive and motor sequelae. One promising approach to addressing this issue is the use of markerless computer vision techniques. In this paper, we introduce a novel approach for recognizing infantile spasms based exclusively on video data. We utilize an expanded 3D neural network pre-trained on an extensive human action recognition dataset called Kinetics. By employing this model, we extract features from short segments of varying sizes sampled from seizure videos, which allows us to effectively capture the spatio-temporal characteristics of infantile spasms. We then apply multiple classifiers to perform binary classification on these extracted features. The best system achieved an average area under the ROC curve of \n<inline-formula> <tex-math>$0.813\\pm 0.058$ </tex-math></inline-formula>\n for a 3-second window.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"32 ","pages":"3751-3760"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10703170","citationCount":"0","resultStr":"{\"title\":\"Adapting Action Recognition Neural Networks for Automated Infantile Spasm Detection\",\"authors\":\"Samuel Diop;Nouha Essid;François Jouen;Jean Bergounioux;Imen Trabelsi\",\"doi\":\"10.1109/TNSRE.2024.3472088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infantile spasms are a severe epileptic syndrome characterized by short muscular contractions lasting from 0.5 to 2 seconds. They are often misdiagnosed due to their atypical presentation, and treatment is frequently delayed, leading to stagnation or regression in psychomotor development and significant cognitive and motor sequelae. One promising approach to addressing this issue is the use of markerless computer vision techniques. In this paper, we introduce a novel approach for recognizing infantile spasms based exclusively on video data. We utilize an expanded 3D neural network pre-trained on an extensive human action recognition dataset called Kinetics. By employing this model, we extract features from short segments of varying sizes sampled from seizure videos, which allows us to effectively capture the spatio-temporal characteristics of infantile spasms. We then apply multiple classifiers to perform binary classification on these extracted features. The best system achieved an average area under the ROC curve of \\n<inline-formula> <tex-math>$0.813\\\\pm 0.058$ </tex-math></inline-formula>\\n for a 3-second window.\",\"PeriodicalId\":13419,\"journal\":{\"name\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"volume\":\"32 \",\"pages\":\"3751-3760\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10703170\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10703170/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10703170/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

婴儿痉挛症是一种严重的癫痫综合征,以持续 0.5 至 2 秒的短促肌肉收缩为特征。由于表现不典型,它们经常被误诊,治疗也经常被延误,导致精神运动发育停滞或倒退,以及严重的认知和运动后遗症。解决这一问题的一个可行方法是使用无标记计算机视觉技术。在本文中,我们介绍了一种完全基于视频数据识别婴儿痉挛症的新方法。我们利用在名为 Kinetics 的大量人类动作识别数据集上预先训练的扩展 3D 神经网络。通过使用该模型,我们从发作视频中采样的不同大小的短片段中提取特征,从而有效捕捉到婴儿痉挛的时空特征。然后,我们使用多个分类器对这些提取的特征进行二元分类。在 3 秒窗口中,最佳系统的平均 ROC 曲线下面积为 0.813±0.058。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adapting Action Recognition Neural Networks for Automated Infantile Spasm Detection
Infantile spasms are a severe epileptic syndrome characterized by short muscular contractions lasting from 0.5 to 2 seconds. They are often misdiagnosed due to their atypical presentation, and treatment is frequently delayed, leading to stagnation or regression in psychomotor development and significant cognitive and motor sequelae. One promising approach to addressing this issue is the use of markerless computer vision techniques. In this paper, we introduce a novel approach for recognizing infantile spasms based exclusively on video data. We utilize an expanded 3D neural network pre-trained on an extensive human action recognition dataset called Kinetics. By employing this model, we extract features from short segments of varying sizes sampled from seizure videos, which allows us to effectively capture the spatio-temporal characteristics of infantile spasms. We then apply multiple classifiers to perform binary classification on these extracted features. The best system achieved an average area under the ROC curve of $0.813\pm 0.058$ for a 3-second window.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
期刊最新文献
Semi-Autonomous Continuous Robotic Arm Control Using an Augmented Reality Brain-Computer Interface Low-Intensity Focused Ultrasound Stimulation on Fingertip Can Evoke Fine Tactile Sensations and Different Local Hemodynamic Responses The Neural Basis of the Effect of Transcutaneous Auricular Vagus Nerve Stimulation on Emotion Regulation Related Brain Regions: An rs-fMRI Study An Asynchronous Training-free SSVEP-BCI Detection Algorithm for Non-Equal Prior Probability Scenarios. A Swing-Assist Controller for Enhancing Knee Flexion in a Semi-Powered Transfemoral Prosthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1