牛奶外泌体和地塞米松载体外泌体在角膜碱烧伤模型中的抗炎和修复作用

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2024-09-30 DOI:10.1016/j.ijpharm.2024.124784
{"title":"牛奶外泌体和地塞米松载体外泌体在角膜碱烧伤模型中的抗炎和修复作用","authors":"","doi":"10.1016/j.ijpharm.2024.124784","DOIUrl":null,"url":null,"abstract":"<div><div>Corneal alkali burn is a common and challenging ocular trauma, necessitating the use of dexamethasone (DXMS) as a therapeutic agent. However, prolonged and frequent administration of this drug can lead to undesirable side effects, limiting its clinical application. This study aimed to investigate the role and mechanism of action of exosomes as drug carriers in corneal alkali burn repair. We employed centrifugation to isolate milk exosomes (EXO) as nanocarriers. We observed that EXO enhanced the activity and migration of corneal epithelial cells, expediting the repair process following corneal injury. Additionally, a nano-drug delivery model (DXMS@EXO) was designed using ultrasound to load DXMS into exosomes, thus enabling targeted delivery to inflammatory cells and enhancing drug efficacy. DXMS@EXO inhibited the inflammatory processes in the corneal alkali burn model by modulating the classical Wnt signaling pathway, thereby promoting corneal re-epithelialization and wound healing and accelerating the repair process of corneal alkali burn. Neither EXO nor DXMS@EXO exhibited significant side effects during the course of treatment. This study highlighted the substantial potential of EXO and DXMS@EXO in improving drug efficacy and facilitating the repair of corneal alkali burn.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-inflammatory and Restorative effects of milk exosomes and Dexamethasone-Loaded exosomes in a corneal alkali burn model\",\"authors\":\"\",\"doi\":\"10.1016/j.ijpharm.2024.124784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Corneal alkali burn is a common and challenging ocular trauma, necessitating the use of dexamethasone (DXMS) as a therapeutic agent. However, prolonged and frequent administration of this drug can lead to undesirable side effects, limiting its clinical application. This study aimed to investigate the role and mechanism of action of exosomes as drug carriers in corneal alkali burn repair. We employed centrifugation to isolate milk exosomes (EXO) as nanocarriers. We observed that EXO enhanced the activity and migration of corneal epithelial cells, expediting the repair process following corneal injury. Additionally, a nano-drug delivery model (DXMS@EXO) was designed using ultrasound to load DXMS into exosomes, thus enabling targeted delivery to inflammatory cells and enhancing drug efficacy. DXMS@EXO inhibited the inflammatory processes in the corneal alkali burn model by modulating the classical Wnt signaling pathway, thereby promoting corneal re-epithelialization and wound healing and accelerating the repair process of corneal alkali burn. Neither EXO nor DXMS@EXO exhibited significant side effects during the course of treatment. This study highlighted the substantial potential of EXO and DXMS@EXO in improving drug efficacy and facilitating the repair of corneal alkali burn.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517324010184\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324010184","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

角膜碱烧伤是一种常见且具有挑战性的眼外伤,需要使用地塞米松(DXMS)作为治疗药物。然而,长期频繁使用该药物会导致不良副作用,限制了其临床应用。本研究旨在探讨外泌体作为药物载体在角膜碱烧伤修复中的作用和作用机制。我们采用离心法分离出牛奶外泌体(EXO)作为纳米载体。我们观察到,EXO 能增强角膜上皮细胞的活性和迁移,加快角膜损伤后的修复过程。此外,我们还设计了一种纳米药物递送模型(DXMS@EXO),利用超声波将DXMS载入外泌体,从而实现对炎症细胞的靶向递送,提高药物疗效。DXMS@EXO通过调节经典的Wnt信号通路,抑制了角膜碱烧伤模型中的炎症过程,从而促进了角膜的再上皮化和伤口愈合,加速了角膜碱烧伤的修复过程。在治疗过程中,EXO和DXMS@EXO均未表现出明显的副作用。这项研究凸显了 EXO 和 DXMS@EXO 在提高药物疗效和促进角膜碱烧伤修复方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anti-inflammatory and Restorative effects of milk exosomes and Dexamethasone-Loaded exosomes in a corneal alkali burn model
Corneal alkali burn is a common and challenging ocular trauma, necessitating the use of dexamethasone (DXMS) as a therapeutic agent. However, prolonged and frequent administration of this drug can lead to undesirable side effects, limiting its clinical application. This study aimed to investigate the role and mechanism of action of exosomes as drug carriers in corneal alkali burn repair. We employed centrifugation to isolate milk exosomes (EXO) as nanocarriers. We observed that EXO enhanced the activity and migration of corneal epithelial cells, expediting the repair process following corneal injury. Additionally, a nano-drug delivery model (DXMS@EXO) was designed using ultrasound to load DXMS into exosomes, thus enabling targeted delivery to inflammatory cells and enhancing drug efficacy. DXMS@EXO inhibited the inflammatory processes in the corneal alkali burn model by modulating the classical Wnt signaling pathway, thereby promoting corneal re-epithelialization and wound healing and accelerating the repair process of corneal alkali burn. Neither EXO nor DXMS@EXO exhibited significant side effects during the course of treatment. This study highlighted the substantial potential of EXO and DXMS@EXO in improving drug efficacy and facilitating the repair of corneal alkali burn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Chitosan gel loaded with carbon dots and mesoporous hydroxyapatite nanoparticles as a topical formulation for skin regeneration: An animal study Quality by design-based optimization of teriflunomide and quercetin combinational topical transferosomes for the treatment of rheumatoid arthritis Nasal administration of Xingnaojing biomimetic nanoparticles for the treatment of ischemic stroke Silk fibroin/chitosan thiourea hydrogel scaffold with vancomycin and quercetin-loaded PLGA nanoparticles for treating chronic MRSA osteomyelitis in rats Erlotinib and curcumin-loaded nanoparticles embedded in thermosensitive chitosan hydrogels for enhanced treatment of head and neck cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1