研究用于干眼症治疗的新型治疗成分:体外和体内研究。

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2024-09-29 DOI:10.1016/j.ijpharm.2024.124783
{"title":"研究用于干眼症治疗的新型治疗成分:体外和体内研究。","authors":"","doi":"10.1016/j.ijpharm.2024.124783","DOIUrl":null,"url":null,"abstract":"<div><div>Dry eye syndrome (DES) presents a significant challenge in ophthalmic care, necessitating innovative approaches for effective management. This research article introduces a multifaceted strategy to address DES through the development of ocular inserts utilizing advanced technologies such as hot-melt extrusion (HME) and the CaliCut post-extrusion system. The formulation includes key ingredients targeting different layers of the tear film and associated inflammation, including hydroxypropyl cellulose (HPC), polyethylene glycol (PEG), castor oil, and dexamethasone. The study incorporates a Design of Experiments (DoE) approach, integrating HME and the precise stretching and cutting technique of CaliCut for manufacturing consistency and dimensional control of the inserts. The developed insert(s) have been systematically characterized for their physicochemical properties, release profile, and <em>in vivo</em> efficacy. <em>In silico</em> molecular docking studies have also been conducted to assess the binding affinities of formulation components with ocular mucin, elucidating their binding affinities. Preliminary results demonstrate promising potential for the developed insert in managing DES, offering preservative-free treatment, sustained drug delivery, and improved patient compliance. This study highlights the integration of advanced technologies and formulation strategies in ocular drug delivery for effective DES management.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating a novel therapeutic composition for dry eye syndrome management: In vitro and in vivo studies\",\"authors\":\"\",\"doi\":\"10.1016/j.ijpharm.2024.124783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dry eye syndrome (DES) presents a significant challenge in ophthalmic care, necessitating innovative approaches for effective management. This research article introduces a multifaceted strategy to address DES through the development of ocular inserts utilizing advanced technologies such as hot-melt extrusion (HME) and the CaliCut post-extrusion system. The formulation includes key ingredients targeting different layers of the tear film and associated inflammation, including hydroxypropyl cellulose (HPC), polyethylene glycol (PEG), castor oil, and dexamethasone. The study incorporates a Design of Experiments (DoE) approach, integrating HME and the precise stretching and cutting technique of CaliCut for manufacturing consistency and dimensional control of the inserts. The developed insert(s) have been systematically characterized for their physicochemical properties, release profile, and <em>in vivo</em> efficacy. <em>In silico</em> molecular docking studies have also been conducted to assess the binding affinities of formulation components with ocular mucin, elucidating their binding affinities. Preliminary results demonstrate promising potential for the developed insert in managing DES, offering preservative-free treatment, sustained drug delivery, and improved patient compliance. This study highlights the integration of advanced technologies and formulation strategies in ocular drug delivery for effective DES management.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517324010172\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324010172","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

干眼症(DES)是眼科护理中的一项重大挑战,需要采用创新方法进行有效管理。这篇研究文章介绍了一种多方面的策略,通过利用热熔挤出(HME)和 CaliCut 后挤出系统等先进技术开发眼部插件来解决 DES 问题。配方中含有针对不同泪膜层和相关炎症的关键成分,包括羟丙基纤维素 (HPC)、聚乙二醇 (PEG)、蓖麻油和地塞米松。该研究采用了实验设计(DoE)方法,将 HME 与 CaliCut 精确拉伸和切割技术相结合,以实现插件制造的一致性和尺寸控制。已对开发的插入物的理化性质、释放曲线和体内疗效进行了系统表征。此外,还进行了硅学分子对接研究,以评估制剂成分与眼部粘蛋白的结合亲和力,阐明其结合亲和力。初步结果表明,所开发的插入物在管理 DES 方面具有广阔的潜力,可提供无防腐剂治疗、持续给药和改善患者依从性。这项研究强调了在眼部给药中整合先进技术和制剂策略以有效管理 DES 的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating a novel therapeutic composition for dry eye syndrome management: In vitro and in vivo studies
Dry eye syndrome (DES) presents a significant challenge in ophthalmic care, necessitating innovative approaches for effective management. This research article introduces a multifaceted strategy to address DES through the development of ocular inserts utilizing advanced technologies such as hot-melt extrusion (HME) and the CaliCut post-extrusion system. The formulation includes key ingredients targeting different layers of the tear film and associated inflammation, including hydroxypropyl cellulose (HPC), polyethylene glycol (PEG), castor oil, and dexamethasone. The study incorporates a Design of Experiments (DoE) approach, integrating HME and the precise stretching and cutting technique of CaliCut for manufacturing consistency and dimensional control of the inserts. The developed insert(s) have been systematically characterized for their physicochemical properties, release profile, and in vivo efficacy. In silico molecular docking studies have also been conducted to assess the binding affinities of formulation components with ocular mucin, elucidating their binding affinities. Preliminary results demonstrate promising potential for the developed insert in managing DES, offering preservative-free treatment, sustained drug delivery, and improved patient compliance. This study highlights the integration of advanced technologies and formulation strategies in ocular drug delivery for effective DES management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Chitosan gel loaded with carbon dots and mesoporous hydroxyapatite nanoparticles as a topical formulation for skin regeneration: An animal study Quality by design-based optimization of teriflunomide and quercetin combinational topical transferosomes for the treatment of rheumatoid arthritis Nasal administration of Xingnaojing biomimetic nanoparticles for the treatment of ischemic stroke Silk fibroin/chitosan thiourea hydrogel scaffold with vancomycin and quercetin-loaded PLGA nanoparticles for treating chronic MRSA osteomyelitis in rats Erlotinib and curcumin-loaded nanoparticles embedded in thermosensitive chitosan hydrogels for enhanced treatment of head and neck cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1