Xiaodong Yuan , Wen Li , Yi Yuan , Xuhong Zhu , Yan Meng , Qi Wu , Qi Yan , Pingshu Zhang
{"title":"人脂肪基质细胞神经元分化的特征:形态学、分子和超微结构的见解。","authors":"Xiaodong Yuan , Wen Li , Yi Yuan , Xuhong Zhu , Yan Meng , Qi Wu , Qi Yan , Pingshu Zhang","doi":"10.1016/j.jneumeth.2024.110296","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Adipose-derived stromal cells (ADSCs) have shown promise as a potential source of neural differentiation. In this study, we investigated the morphological, molecular and ultrastructural features of ADSCs during neuronal differentiation.</div></div><div><h3>Methods</h3><div>ADSCs were induced in vitro and their differentiation was examined at different time points. Immunocytochemical staining was performed to detect the expression of neuron-specific markers NSE and MAP-2. Immunofluorescence double labeling and Western blot detected the co-expression of presynaptic markers (CaMKII, SynCAM1, SYN) and postsynaptic markers (PSD-95, Synapsin I). Scanning electron microscopy (SEM) was performed to detect the synaptic structural features of differentiated neurons.</div></div><div><h3>Results</h3><div>ADSCs showed diverse morphological features during differentiation, gradually acquiring a neuron-like spindle shape and organized arrangement. The expression of neuron-specific markers and synaptic markers peaked at 5 h of induction. Scanning electron microscopy showed polygonal protrusions of ADSC-derived neurons, and transmission electron microscopy showed characteristic ultrastructures such as nidus, synaptic vesicle-like structures, and tight junctions.</div></div><div><h3>Conclusion</h3><div>Our findings suggest that ADSCs differentiated for 5 h have neuronal features, including morphological, molecular, and ultrastructural resemblance to neurons, as well as the formation of synaptic structures. These insights contribute to a better understanding of ADSC-based neuronal differentiation and pave the way for future applications in regenerative medicine and neurodegenerative diseases.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of neuronal differentiation in human adipose-derived stromal cells: morphological, molecular, and ultrastructural insights\",\"authors\":\"Xiaodong Yuan , Wen Li , Yi Yuan , Xuhong Zhu , Yan Meng , Qi Wu , Qi Yan , Pingshu Zhang\",\"doi\":\"10.1016/j.jneumeth.2024.110296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>Adipose-derived stromal cells (ADSCs) have shown promise as a potential source of neural differentiation. In this study, we investigated the morphological, molecular and ultrastructural features of ADSCs during neuronal differentiation.</div></div><div><h3>Methods</h3><div>ADSCs were induced in vitro and their differentiation was examined at different time points. Immunocytochemical staining was performed to detect the expression of neuron-specific markers NSE and MAP-2. Immunofluorescence double labeling and Western blot detected the co-expression of presynaptic markers (CaMKII, SynCAM1, SYN) and postsynaptic markers (PSD-95, Synapsin I). Scanning electron microscopy (SEM) was performed to detect the synaptic structural features of differentiated neurons.</div></div><div><h3>Results</h3><div>ADSCs showed diverse morphological features during differentiation, gradually acquiring a neuron-like spindle shape and organized arrangement. The expression of neuron-specific markers and synaptic markers peaked at 5 h of induction. Scanning electron microscopy showed polygonal protrusions of ADSC-derived neurons, and transmission electron microscopy showed characteristic ultrastructures such as nidus, synaptic vesicle-like structures, and tight junctions.</div></div><div><h3>Conclusion</h3><div>Our findings suggest that ADSCs differentiated for 5 h have neuronal features, including morphological, molecular, and ultrastructural resemblance to neurons, as well as the formation of synaptic structures. These insights contribute to a better understanding of ADSC-based neuronal differentiation and pave the way for future applications in regenerative medicine and neurodegenerative diseases.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027024002413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024002413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Characterization of neuronal differentiation in human adipose-derived stromal cells: morphological, molecular, and ultrastructural insights
Objective
Adipose-derived stromal cells (ADSCs) have shown promise as a potential source of neural differentiation. In this study, we investigated the morphological, molecular and ultrastructural features of ADSCs during neuronal differentiation.
Methods
ADSCs were induced in vitro and their differentiation was examined at different time points. Immunocytochemical staining was performed to detect the expression of neuron-specific markers NSE and MAP-2. Immunofluorescence double labeling and Western blot detected the co-expression of presynaptic markers (CaMKII, SynCAM1, SYN) and postsynaptic markers (PSD-95, Synapsin I). Scanning electron microscopy (SEM) was performed to detect the synaptic structural features of differentiated neurons.
Results
ADSCs showed diverse morphological features during differentiation, gradually acquiring a neuron-like spindle shape and organized arrangement. The expression of neuron-specific markers and synaptic markers peaked at 5 h of induction. Scanning electron microscopy showed polygonal protrusions of ADSC-derived neurons, and transmission electron microscopy showed characteristic ultrastructures such as nidus, synaptic vesicle-like structures, and tight junctions.
Conclusion
Our findings suggest that ADSCs differentiated for 5 h have neuronal features, including morphological, molecular, and ultrastructural resemblance to neurons, as well as the formation of synaptic structures. These insights contribute to a better understanding of ADSC-based neuronal differentiation and pave the way for future applications in regenerative medicine and neurodegenerative diseases.