使用临床变量和辐射剂量分布体积的下颌骨骨软化NTCP建模中深度学习多模态数据融合策略的比较。

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2024-10-10 DOI:10.1088/1361-6560/ad8290
Laia Humbert-Vidan, Vinod Patel, Andrew P King, Teresa Guerrero Urbano
{"title":"使用临床变量和辐射剂量分布体积的下颌骨骨软化NTCP建模中深度学习多模态数据融合策略的比较。","authors":"Laia Humbert-Vidan, Vinod Patel, Andrew P King, Teresa Guerrero Urbano","doi":"10.1088/1361-6560/ad8290","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Normal tissue complication probability (NTCP) modelling is rapidly embracing deep learning (DL) methods, acknowledging the importance of spatial dose information. Finding effective ways to combine information from radiation dose distribution maps (dosiomics) and clinical data involves technical challenges and requires domain knowledge. We propose different multi-modality data fusion strategies to facilitate future DL-based NTCP studies.<i>Approach.</i>Early, joint and late DL multi-modality fusion strategies were compared using clinical and mandibular radiation dose distribution volumes. These were contrasted with single-modality models: a random forest trained on non-image data (clinical, demographic and dose-volume metrics) and a 3D DenseNet-40 trained on image data (mandibular dose distribution maps). The study involved a matched cohort of 92 osteoradionecrosis cases and 92 controls from a single institution.<i>Main results.</i>The late fusion model exhibited superior discrimination and calibration performance, while the join fusion achieved a more balanced distribution of the predicted probabilities. Discrimination performance did not significantly differ between strategies. Late fusion, though less technically complex, lacks crucial inter-modality interactions for NTCP modelling. In contrast, joint fusion, despite its complexity, resulted in a single network training process which included intra- and inter-modality interactions in its model parameter optimisation.<i>Significance.</i>This study is a pioneering effort in comparing different strategies for including image data into DL-based NTCP models in combination with lower dimensional data such as clinical variables. The discrimination performance of such multi-modality NTCP models and the choice of fusion strategy will depend on the distribution and quality of both types of data. Multiple data fusion strategies should be compared and reported in multi-modality NTCP modelling using DL.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of deep-learning multimodality data fusion strategies in mandibular osteoradionecrosis NTCP modelling using clinical variables and radiation dose distribution volumes.\",\"authors\":\"Laia Humbert-Vidan, Vinod Patel, Andrew P King, Teresa Guerrero Urbano\",\"doi\":\"10.1088/1361-6560/ad8290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Normal tissue complication probability (NTCP) modelling is rapidly embracing deep learning (DL) methods, acknowledging the importance of spatial dose information. Finding effective ways to combine information from radiation dose distribution maps (dosiomics) and clinical data involves technical challenges and requires domain knowledge. We propose different multi-modality data fusion strategies to facilitate future DL-based NTCP studies.<i>Approach.</i>Early, joint and late DL multi-modality fusion strategies were compared using clinical and mandibular radiation dose distribution volumes. These were contrasted with single-modality models: a random forest trained on non-image data (clinical, demographic and dose-volume metrics) and a 3D DenseNet-40 trained on image data (mandibular dose distribution maps). The study involved a matched cohort of 92 osteoradionecrosis cases and 92 controls from a single institution.<i>Main results.</i>The late fusion model exhibited superior discrimination and calibration performance, while the join fusion achieved a more balanced distribution of the predicted probabilities. Discrimination performance did not significantly differ between strategies. Late fusion, though less technically complex, lacks crucial inter-modality interactions for NTCP modelling. In contrast, joint fusion, despite its complexity, resulted in a single network training process which included intra- and inter-modality interactions in its model parameter optimisation.<i>Significance.</i>This study is a pioneering effort in comparing different strategies for including image data into DL-based NTCP models in combination with lower dimensional data such as clinical variables. The discrimination performance of such multi-modality NTCP models and the choice of fusion strategy will depend on the distribution and quality of both types of data. Multiple data fusion strategies should be compared and reported in multi-modality NTCP modelling using DL.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ad8290\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad8290","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的: 正常组织并发症概率(NTCP)建模正在迅速采用深度学习(DL)方法,承认空间剂量信息的重要性。要找到有效的方法将辐射剂量分布图(剂量组学)和临床数据的信息结合起来,这涉及到技术挑战和领域知识。我们提出了不同的多模态数据融合策略,以促进未来基于 DL 的 NTCP 研究。 方法 使用临床和下颌骨辐射剂量分布图对早期、联合和晚期 DL 多模态融合策略进行了比较。这些模型与单模态模型进行了对比:根据非图像数据(临床、人口统计学和剂量体积指标)训练的随机森林模型和根据图像数据(下颌骨剂量分布图)训练的 3D DenseNet-40 模型。研究涉及一个机构的 92 个 ORN 病例和 92 个对照组的匹配队列。不同策略的判别性能差异不大。晚期融合虽然在技术上不那么复杂,但缺乏对 NTCP 建模至关重要的模式间相互作用。与此相反,联合融合尽管复杂,但只需一个网络训练过程,在模型参数优化过程中就包含了模内和模间的相互作用。这种多模态 NTCP 模型的分辨性能和融合策略的选择取决于两种数据的分布和质量。在使用 DL. 进行多模态 NTCP 建模时,应比较和报告多种数据融合策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of deep-learning multimodality data fusion strategies in mandibular osteoradionecrosis NTCP modelling using clinical variables and radiation dose distribution volumes.

Objective.Normal tissue complication probability (NTCP) modelling is rapidly embracing deep learning (DL) methods, acknowledging the importance of spatial dose information. Finding effective ways to combine information from radiation dose distribution maps (dosiomics) and clinical data involves technical challenges and requires domain knowledge. We propose different multi-modality data fusion strategies to facilitate future DL-based NTCP studies.Approach.Early, joint and late DL multi-modality fusion strategies were compared using clinical and mandibular radiation dose distribution volumes. These were contrasted with single-modality models: a random forest trained on non-image data (clinical, demographic and dose-volume metrics) and a 3D DenseNet-40 trained on image data (mandibular dose distribution maps). The study involved a matched cohort of 92 osteoradionecrosis cases and 92 controls from a single institution.Main results.The late fusion model exhibited superior discrimination and calibration performance, while the join fusion achieved a more balanced distribution of the predicted probabilities. Discrimination performance did not significantly differ between strategies. Late fusion, though less technically complex, lacks crucial inter-modality interactions for NTCP modelling. In contrast, joint fusion, despite its complexity, resulted in a single network training process which included intra- and inter-modality interactions in its model parameter optimisation.Significance.This study is a pioneering effort in comparing different strategies for including image data into DL-based NTCP models in combination with lower dimensional data such as clinical variables. The discrimination performance of such multi-modality NTCP models and the choice of fusion strategy will depend on the distribution and quality of both types of data. Multiple data fusion strategies should be compared and reported in multi-modality NTCP modelling using DL.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Automated planning of curved needle channels in 3D printed patient-tailored applicators for cervical cancer brachytherapy. Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study. Novel frequency selective B1focusing passive Lenz resonators for substantial MRI signal-to-noise ratio amplification. On the microdosimetric characterisation of the radiation quality of a carbon-ion beam and the effect of the target volume thickness. Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1