海洋浮游植物光合触角生物发生的光色调节

IF 3.9 2区 生物学 Q2 CELL BIOLOGY Plant and Cell Physiology Pub Date : 2024-10-03 DOI:10.1093/pcp/pcae115
David M Kehoe, Avijit Biswas, Bo Chen, Louison Dufour, Théophile Grébert, Allissa M Haney, Kes Lynn Joseph, Indika Kumarapperuma, Adam A Nguyen, Morgane Ratin, Joseph E Sanfilippo, Animesh Shukla, Laurence Garczarek, Xiaojing Yang, Wendy M Schluchter, Frédéric Partensky
{"title":"海洋浮游植物光合触角生物发生的光色调节","authors":"David M Kehoe, Avijit Biswas, Bo Chen, Louison Dufour, Théophile Grébert, Allissa M Haney, Kes Lynn Joseph, Indika Kumarapperuma, Adam A Nguyen, Morgane Ratin, Joseph E Sanfilippo, Animesh Shukla, Laurence Garczarek, Xiaojing Yang, Wendy M Schluchter, Frédéric Partensky","doi":"10.1093/pcp/pcae115","DOIUrl":null,"url":null,"abstract":"<p><p>Photosynthesis in the world's oceans is primarily conducted by phytoplankton, microorganisms that use many different pigments for light capture. Synechococcus is a unicellular cyanobacterium estimated to be the second most abundant marine phototroph, with a global population of 7 x 1026 cells. This group's success is partly due to the pigment diversity in their photosynthetic light harvesting antennae, which maximize photon capture for photosynthesis. Many Synechococcus isolates adjust their antennae composition in response to shifts in the blue:green ratio of ambient light. This response was named Type 4 chromatic acclimation (CA4). Research has made significant progress in understanding CA4 across scales, from its global ecological importance to its molecular mechanisms. Two forms of CA4 exist, each correlated with the occurrence of one of two distinct but related genomic islands. Several genes in these islands are differentially transcribed by the ambient blue:green light ratio. The encoded proteins control the addition of different pigments to the antennae proteins in blue versus green light, altering their absorption characteristics to maximize photon capture. These genes are regulated by several putative transcription factors also encoded in the genomic islands. Ecologically, CA4 is the most abundant of marine Synechococcus pigment types, occurring in over 40% of the population oceanwide. It predominates at higher latitudes and at depth, suggesting that CA4 is most beneficial under sub-saturating photosynthetic light irradiances. Future CA4 research will further clarify the ecological role of CA4 and the molecular mechanisms controlling this globally important form of phenotypic plasticity.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light Color Regulation of Photosynthetic Antennae Biogenesis in Marine Phytoplankton.\",\"authors\":\"David M Kehoe, Avijit Biswas, Bo Chen, Louison Dufour, Théophile Grébert, Allissa M Haney, Kes Lynn Joseph, Indika Kumarapperuma, Adam A Nguyen, Morgane Ratin, Joseph E Sanfilippo, Animesh Shukla, Laurence Garczarek, Xiaojing Yang, Wendy M Schluchter, Frédéric Partensky\",\"doi\":\"10.1093/pcp/pcae115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photosynthesis in the world's oceans is primarily conducted by phytoplankton, microorganisms that use many different pigments for light capture. Synechococcus is a unicellular cyanobacterium estimated to be the second most abundant marine phototroph, with a global population of 7 x 1026 cells. This group's success is partly due to the pigment diversity in their photosynthetic light harvesting antennae, which maximize photon capture for photosynthesis. Many Synechococcus isolates adjust their antennae composition in response to shifts in the blue:green ratio of ambient light. This response was named Type 4 chromatic acclimation (CA4). Research has made significant progress in understanding CA4 across scales, from its global ecological importance to its molecular mechanisms. Two forms of CA4 exist, each correlated with the occurrence of one of two distinct but related genomic islands. Several genes in these islands are differentially transcribed by the ambient blue:green light ratio. The encoded proteins control the addition of different pigments to the antennae proteins in blue versus green light, altering their absorption characteristics to maximize photon capture. These genes are regulated by several putative transcription factors also encoded in the genomic islands. Ecologically, CA4 is the most abundant of marine Synechococcus pigment types, occurring in over 40% of the population oceanwide. It predominates at higher latitudes and at depth, suggesting that CA4 is most beneficial under sub-saturating photosynthetic light irradiances. Future CA4 research will further clarify the ecological role of CA4 and the molecular mechanisms controlling this globally important form of phenotypic plasticity.</p>\",\"PeriodicalId\":20575,\"journal\":{\"name\":\"Plant and Cell Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Cell Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/pcp/pcae115\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcae115","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

世界海洋中的光合作用主要由浮游植物进行,浮游植物是一种利用多种不同色素捕捉光线的微生物。Synechococcus 是一种单细胞蓝藻,据估计是第二大最丰富的海洋光营养体,在全球拥有 7 x 1026 个细胞。这类蓝藻的成功部分归功于其光合采光触角的色素多样性,这种色素能最大限度地捕捉光子进行光合作用。许多分离出的 Synechococcus 会根据环境光蓝绿比例的变化调整触角的组成。这种反应被命名为 4 型色度适应(CA4)。从其全球生态重要性到其分子机制,研究工作在理解 CA4 方面取得了重大进展。CA4 有两种形式,每种形式都与两个不同但相关的基因组岛中的一个相关。这些基因组岛中的几个基因受环境蓝绿光比例的影响而发生不同的转录。编码的蛋白质控制着触角蛋白质在蓝光和绿光下添加不同的色素,从而改变其吸收特性,最大限度地捕捉光子。这些基因受基因组岛中也编码的几种假定转录因子的调控。从生态学角度看,CA4 是海洋中最丰富的 Synechococcus 色素类型,在整个海洋中有超过 40% 的种群存在。它主要分布在高纬度地区和深海中,这表明 CA4 在光合作用光辐照度低于饱和的情况下最为有益。未来的 CA4 研究将进一步阐明 CA4 的生态作用以及控制这种具有全球重要意义的表型可塑性的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Light Color Regulation of Photosynthetic Antennae Biogenesis in Marine Phytoplankton.

Photosynthesis in the world's oceans is primarily conducted by phytoplankton, microorganisms that use many different pigments for light capture. Synechococcus is a unicellular cyanobacterium estimated to be the second most abundant marine phototroph, with a global population of 7 x 1026 cells. This group's success is partly due to the pigment diversity in their photosynthetic light harvesting antennae, which maximize photon capture for photosynthesis. Many Synechococcus isolates adjust their antennae composition in response to shifts in the blue:green ratio of ambient light. This response was named Type 4 chromatic acclimation (CA4). Research has made significant progress in understanding CA4 across scales, from its global ecological importance to its molecular mechanisms. Two forms of CA4 exist, each correlated with the occurrence of one of two distinct but related genomic islands. Several genes in these islands are differentially transcribed by the ambient blue:green light ratio. The encoded proteins control the addition of different pigments to the antennae proteins in blue versus green light, altering their absorption characteristics to maximize photon capture. These genes are regulated by several putative transcription factors also encoded in the genomic islands. Ecologically, CA4 is the most abundant of marine Synechococcus pigment types, occurring in over 40% of the population oceanwide. It predominates at higher latitudes and at depth, suggesting that CA4 is most beneficial under sub-saturating photosynthetic light irradiances. Future CA4 research will further clarify the ecological role of CA4 and the molecular mechanisms controlling this globally important form of phenotypic plasticity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant and Cell Physiology
Plant and Cell Physiology 生物-细胞生物学
CiteScore
8.40
自引率
4.10%
发文量
166
审稿时长
1.7 months
期刊介绍: Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels. Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.
期刊最新文献
Convergent emergence of Glucomannan β-galactosyltransferase activity in Asterids and Rosids. De-etiolation is Almost Colour Blind: the Study of Photosynthesis Awakening Under Blue and Red Light. Gene targeting in Arabidopsis through one-armed homology-directed repair. The Armor of Orchid Petals: Insights into Cuticle Deposition Regulation. Ancient Origin of Acetyltransferases Catalyzing O-acetylation of Plant Cell Wall Polysaccharides.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1