Barbara Perrone , Maria Gunnarsson , Diana Bernin , Emma Sparr , Daniel Topgaard
{"title":"低温探针技术无需同位素标记即可对角质层进行多维固态核磁共振成像。","authors":"Barbara Perrone , Maria Gunnarsson , Diana Bernin , Emma Sparr , Daniel Topgaard","doi":"10.1016/j.ssnmr.2024.101972","DOIUrl":null,"url":null,"abstract":"<div><div>Solid-state NMR has great potential for investigating molecular structure, dynamics, and organization of the <em>stratum corneum</em>, the outer 10–20 μm of the skin, but is hampered by the unfeasibility of isotope labelling as generally required to reach sufficient signal-to-noise ratio for the more informative multidimensional NMR techniques. In this preliminary study of pig <em>stratum corneum</em> at 35 °C and water-free conditions, we demonstrate that cryogenic probe technology offers sufficient signal boost to observe previously undetectable minor resonances that can be uniquely assigned to fluid cholesterol, ceramides, and triacylglycerols, as well as enables <sup>1</sup>H–<sup>1</sup>H spin diffusion monitored by 2D <sup>1</sup>H-<sup>13</sup>C HETCOR to estimate 1–100 nm distances between specific atomic sites on proteins and lipids. The new capabilities open up for future multidimensional solid-state NMR studies to answer long-standing questions about partitioning of additives, such as pharmaceutically active substances, between solid and liquid domains within the protein and lipid phases in the <em>stratum corneum</em> and the lipids of the sebum.</div></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"134 ","pages":"Article 101972"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryogenic probe technology enables multidimensional solid-state NMR of the stratum corneum without isotope labeling\",\"authors\":\"Barbara Perrone , Maria Gunnarsson , Diana Bernin , Emma Sparr , Daniel Topgaard\",\"doi\":\"10.1016/j.ssnmr.2024.101972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solid-state NMR has great potential for investigating molecular structure, dynamics, and organization of the <em>stratum corneum</em>, the outer 10–20 μm of the skin, but is hampered by the unfeasibility of isotope labelling as generally required to reach sufficient signal-to-noise ratio for the more informative multidimensional NMR techniques. In this preliminary study of pig <em>stratum corneum</em> at 35 °C and water-free conditions, we demonstrate that cryogenic probe technology offers sufficient signal boost to observe previously undetectable minor resonances that can be uniquely assigned to fluid cholesterol, ceramides, and triacylglycerols, as well as enables <sup>1</sup>H–<sup>1</sup>H spin diffusion monitored by 2D <sup>1</sup>H-<sup>13</sup>C HETCOR to estimate 1–100 nm distances between specific atomic sites on proteins and lipids. The new capabilities open up for future multidimensional solid-state NMR studies to answer long-standing questions about partitioning of additives, such as pharmaceutically active substances, between solid and liquid domains within the protein and lipid phases in the <em>stratum corneum</em> and the lipids of the sebum.</div></div>\",\"PeriodicalId\":21937,\"journal\":{\"name\":\"Solid state nuclear magnetic resonance\",\"volume\":\"134 \",\"pages\":\"Article 101972\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid state nuclear magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926204024000584\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204024000584","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Cryogenic probe technology enables multidimensional solid-state NMR of the stratum corneum without isotope labeling
Solid-state NMR has great potential for investigating molecular structure, dynamics, and organization of the stratum corneum, the outer 10–20 μm of the skin, but is hampered by the unfeasibility of isotope labelling as generally required to reach sufficient signal-to-noise ratio for the more informative multidimensional NMR techniques. In this preliminary study of pig stratum corneum at 35 °C and water-free conditions, we demonstrate that cryogenic probe technology offers sufficient signal boost to observe previously undetectable minor resonances that can be uniquely assigned to fluid cholesterol, ceramides, and triacylglycerols, as well as enables 1H–1H spin diffusion monitored by 2D 1H-13C HETCOR to estimate 1–100 nm distances between specific atomic sites on proteins and lipids. The new capabilities open up for future multidimensional solid-state NMR studies to answer long-standing questions about partitioning of additives, such as pharmaceutically active substances, between solid and liquid domains within the protein and lipid phases in the stratum corneum and the lipids of the sebum.
期刊介绍:
The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.