{"title":"一种新型 C-4 改性异四氢呋喃可作为一种有效的生物增强剂,增强抗结核药物对结核分枝杆菌的活性。","authors":"Naveen Prakash Bokolia , Kingshuk Bag , Biplab Sarkar , Ruchi Jhawar , Dipankar Chatterji , Narayanaswamy Jayaraman , Anirban Ghosh","doi":"10.1016/j.tube.2024.102569","DOIUrl":null,"url":null,"abstract":"<div><div><em>Mycobacterium tuberculosis</em> is a deadly pathogen that claims millions of lives every year. Current research focuses on finding new anti-tuberculosis drugs that are safe and effective, with lesser side effects and toxicity. One important approach is to identify bio-enhancers that can improve the effectiveness of anti-tuberculosis drugs, resulting in reduced doses and shortened treatment times. The present study investigates the use of <em>C</em>-4 modified isotetrones as bio-enhancers. A series of studies suggest an isotetrone, labeled as C11, inhibits growth, improves MIC, MBC and enhances the killing of <em>M. tuberculosis</em> H37Rv strain when used in combination with the first line and injectable anti-TB drugs in a dose-dependent manner. The combination of C11 and rifampicin also reduces the generation of spontaneous mutants against rifampicin and reaches a mutation prevention concentration (MPC) with moderate rifampicin concentrations. The identified compounds are effective against the MDR strain of <em>M. tuberculosis</em> and non-cytotoxic in HepG2 cells. We find that C11 induces the generation of reactive oxygen species (ROS) inside macrophages and within bacteria, resulting in better efficacy.</div></div>","PeriodicalId":23383,"journal":{"name":"Tuberculosis","volume":"149 ","pages":"Article 102569"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel C-4-modified isotetrone acts as a potent bio-enhancer to augment the activities of anti-tuberculosis drugs against Mycobacterium tuberculosis\",\"authors\":\"Naveen Prakash Bokolia , Kingshuk Bag , Biplab Sarkar , Ruchi Jhawar , Dipankar Chatterji , Narayanaswamy Jayaraman , Anirban Ghosh\",\"doi\":\"10.1016/j.tube.2024.102569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Mycobacterium tuberculosis</em> is a deadly pathogen that claims millions of lives every year. Current research focuses on finding new anti-tuberculosis drugs that are safe and effective, with lesser side effects and toxicity. One important approach is to identify bio-enhancers that can improve the effectiveness of anti-tuberculosis drugs, resulting in reduced doses and shortened treatment times. The present study investigates the use of <em>C</em>-4 modified isotetrones as bio-enhancers. A series of studies suggest an isotetrone, labeled as C11, inhibits growth, improves MIC, MBC and enhances the killing of <em>M. tuberculosis</em> H37Rv strain when used in combination with the first line and injectable anti-TB drugs in a dose-dependent manner. The combination of C11 and rifampicin also reduces the generation of spontaneous mutants against rifampicin and reaches a mutation prevention concentration (MPC) with moderate rifampicin concentrations. The identified compounds are effective against the MDR strain of <em>M. tuberculosis</em> and non-cytotoxic in HepG2 cells. We find that C11 induces the generation of reactive oxygen species (ROS) inside macrophages and within bacteria, resulting in better efficacy.</div></div>\",\"PeriodicalId\":23383,\"journal\":{\"name\":\"Tuberculosis\",\"volume\":\"149 \",\"pages\":\"Article 102569\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tuberculosis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1472979224000957\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tuberculosis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1472979224000957","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
A novel C-4-modified isotetrone acts as a potent bio-enhancer to augment the activities of anti-tuberculosis drugs against Mycobacterium tuberculosis
Mycobacterium tuberculosis is a deadly pathogen that claims millions of lives every year. Current research focuses on finding new anti-tuberculosis drugs that are safe and effective, with lesser side effects and toxicity. One important approach is to identify bio-enhancers that can improve the effectiveness of anti-tuberculosis drugs, resulting in reduced doses and shortened treatment times. The present study investigates the use of C-4 modified isotetrones as bio-enhancers. A series of studies suggest an isotetrone, labeled as C11, inhibits growth, improves MIC, MBC and enhances the killing of M. tuberculosis H37Rv strain when used in combination with the first line and injectable anti-TB drugs in a dose-dependent manner. The combination of C11 and rifampicin also reduces the generation of spontaneous mutants against rifampicin and reaches a mutation prevention concentration (MPC) with moderate rifampicin concentrations. The identified compounds are effective against the MDR strain of M. tuberculosis and non-cytotoxic in HepG2 cells. We find that C11 induces the generation of reactive oxygen species (ROS) inside macrophages and within bacteria, resulting in better efficacy.
期刊介绍:
Tuberculosis is a speciality journal focusing on basic experimental research on tuberculosis, notably on bacteriological, immunological and pathogenesis aspects of the disease. The journal publishes original research and reviews on the host response and immunology of tuberculosis and the molecular biology, genetics and physiology of the organism, however discourages submissions with a meta-analytical focus (for example, articles based on searches of published articles in public electronic databases, especially where there is lack of evidence of the personal involvement of authors in the generation of such material). We do not publish Clinical Case-Studies.
Areas on which submissions are welcomed include:
-Clinical TrialsDiagnostics-
Antimicrobial resistance-
Immunology-
Leprosy-
Microbiology, including microbial physiology-
Molecular epidemiology-
Non-tuberculous Mycobacteria-
Pathogenesis-
Pathology-
Vaccine development.
This Journal does not accept case-reports.
The resurgence of interest in tuberculosis has accelerated the pace of relevant research and Tuberculosis has grown with it, as the only journal dedicated to experimental biomedical research in tuberculosis.