利用基于生理学的生物药剂学建模证明扩大缓释产品溶出度规格的合理性

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Xenobiotica Pub Date : 2024-10-14 DOI:10.1080/00498254.2024.2411980
Adithya Karthik Bhattiprolu, Sivacharan Kollipara, Rajkumar Boddu, Tausif Ahmed
{"title":"利用基于生理学的生物药剂学建模证明扩大缓释产品溶出度规格的合理性","authors":"Adithya Karthik Bhattiprolu, Sivacharan Kollipara, Rajkumar Boddu, Tausif Ahmed","doi":"10.1080/00498254.2024.2411980","DOIUrl":null,"url":null,"abstract":"<p><p>Drug products meeting the dissolution specifications is crucial in order to ensure consistent clinical performance. However, in certain cases, wider dissolution specifications may be required based on product behaviour. While the justification of such wider specifications may be challenging from a regulatory context, approaches such as physiological-based biopharmaceutics modeling (PBBM) can be utilised for this purpose.Product DRL is a fixed-dose combination product consisting of immediate release (IR) and extended-release (ER) portions. For the ER portion, the dissolution specifications consisted of four time points, and a proposal was made to relax the specification at the 2h time point (from 50-70% to 45-67%) to reduce the batch failures at the commercial scale.To support the wider specification, a PBBM was developed and extensively validated with literature & in-house studies. Virtual bioequivalence was performed using the pivotal clinical study data.Virtual dissolution profiles for proposed wider specifications were generated using three different approaches. The incorporation of lower and upper dissolution profiles into the model indicated the absence of impact on <i>in vivo</i> performance thereby justifying the specifications.Regulatory acceptance of proposed specifications with PBBM indicated the significance of using modeling approaches to reduce repeated testing thereby facilitating faster approvals.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"1-15"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Justification of widened dissolution specifications of an extended-release product using physiologically based biopharmaceutics modeling.\",\"authors\":\"Adithya Karthik Bhattiprolu, Sivacharan Kollipara, Rajkumar Boddu, Tausif Ahmed\",\"doi\":\"10.1080/00498254.2024.2411980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug products meeting the dissolution specifications is crucial in order to ensure consistent clinical performance. However, in certain cases, wider dissolution specifications may be required based on product behaviour. While the justification of such wider specifications may be challenging from a regulatory context, approaches such as physiological-based biopharmaceutics modeling (PBBM) can be utilised for this purpose.Product DRL is a fixed-dose combination product consisting of immediate release (IR) and extended-release (ER) portions. For the ER portion, the dissolution specifications consisted of four time points, and a proposal was made to relax the specification at the 2h time point (from 50-70% to 45-67%) to reduce the batch failures at the commercial scale.To support the wider specification, a PBBM was developed and extensively validated with literature & in-house studies. Virtual bioequivalence was performed using the pivotal clinical study data.Virtual dissolution profiles for proposed wider specifications were generated using three different approaches. The incorporation of lower and upper dissolution profiles into the model indicated the absence of impact on <i>in vivo</i> performance thereby justifying the specifications.Regulatory acceptance of proposed specifications with PBBM indicated the significance of using modeling approaches to reduce repeated testing thereby facilitating faster approvals.</p>\",\"PeriodicalId\":23812,\"journal\":{\"name\":\"Xenobiotica\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Xenobiotica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/00498254.2024.2411980\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2024.2411980","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

药品符合溶出度规格对于确保临床表现的一致性至关重要。不过,在某些情况下,可能需要根据产品行为制定更宽的溶出规范。产品 DRL 是一种固定剂量的复方产品,由速释(IR)和缓释(ER)两部分组成。对于 ER 部分,溶出度规格包括四个时间点,建议放宽 2 小时时间点的规格(从 50-70% 降至 45-67%),以减少商业规模的批次失败。为了支持更宽的规格,我们开发了一种 PBBM,并通过文献和内部研究进行了广泛验证。将较低和较高溶解度曲线纳入模型表明对体内性能没有影响,从而证明了规格的合理性。使用 PBBM 提出的规格获得了监管部门的认可,这表明使用建模方法减少重复测试的意义重大,从而有助于加快审批速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Justification of widened dissolution specifications of an extended-release product using physiologically based biopharmaceutics modeling.

Drug products meeting the dissolution specifications is crucial in order to ensure consistent clinical performance. However, in certain cases, wider dissolution specifications may be required based on product behaviour. While the justification of such wider specifications may be challenging from a regulatory context, approaches such as physiological-based biopharmaceutics modeling (PBBM) can be utilised for this purpose.Product DRL is a fixed-dose combination product consisting of immediate release (IR) and extended-release (ER) portions. For the ER portion, the dissolution specifications consisted of four time points, and a proposal was made to relax the specification at the 2h time point (from 50-70% to 45-67%) to reduce the batch failures at the commercial scale.To support the wider specification, a PBBM was developed and extensively validated with literature & in-house studies. Virtual bioequivalence was performed using the pivotal clinical study data.Virtual dissolution profiles for proposed wider specifications were generated using three different approaches. The incorporation of lower and upper dissolution profiles into the model indicated the absence of impact on in vivo performance thereby justifying the specifications.Regulatory acceptance of proposed specifications with PBBM indicated the significance of using modeling approaches to reduce repeated testing thereby facilitating faster approvals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Xenobiotica
Xenobiotica 医学-毒理学
CiteScore
3.80
自引率
5.60%
发文量
96
审稿时长
2 months
期刊介绍: Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology
期刊最新文献
Potential influence of interleukin-6 -174G/C gene polymorphism on kidney graft function and tacrolimus dose requirements: five-year follow-up. Preclinical metabolism and disposition of [14C]GFH009, a novel selective CDK9 inhibitor. Effects of benzophenone-3 on the liver and thyroid of adult zebrafish. Notable drug-drug interaction between omeprazole and voriconazole in CYP2C19 *1 and *2 (rs4244285, 681G>A) alleles in vitro. Justification of widened dissolution specifications of an extended-release product using physiologically based biopharmaceutics modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1