{"title":"[CAR-T在多发性骨髓瘤中的作用以及转诊中心和治疗中心之间的协调]。","authors":"Satoshi Yoshihara","doi":"10.11406/rinketsu.65.1042","DOIUrl":null,"url":null,"abstract":"<p><p>Immunomodulatory drugs (IMiDs), proteasome inhibitors (PIs), and anti-CD38 antibodies have been the three mainstays of myeloma treatment. B-cell maturation antigen (BCMA)-targeted immunotherapy, including chimeric antigen receptor T-cell therapy (CAR-T) and bispecific antibodies (BsAbs), is emerging as another important class of treatment. Two BCMA-targeting CAR-T products, idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel, are approved in Japan, but only ide-cel is available for clinical use. Recently, a randomized phase III study comparing ide-cel with standard therapy in patients with refractory myeloma who had received 2 to 4 prior lines of therapy showed that ide-cel was superior in terms of both response rate and PFS. Based on these results, ide-cel was approved as a third-line therapy. The new availability of bispecific antibodies has also raised new clinical questions regarding how to use CAR-T and BsAbs for each patient, and in what order. Limited data have suggested that favorable responses can be achieved when BsAbs are administered after CAR-T, but responses are suboptimal when CAR-T is administered after BsAbs. Finally, it is important to note that coordination between referring centers and treating centers, including aspects such as timing of patient referral, bridging therapy, and long-term follow-up after CAR-T, is critical to optimization of CAR-T.</p>","PeriodicalId":93844,"journal":{"name":"[Rinsho ketsueki] The Japanese journal of clinical hematology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Role of CAR-T in multiple myeloma and coordination between referring and treating centers].\",\"authors\":\"Satoshi Yoshihara\",\"doi\":\"10.11406/rinketsu.65.1042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunomodulatory drugs (IMiDs), proteasome inhibitors (PIs), and anti-CD38 antibodies have been the three mainstays of myeloma treatment. B-cell maturation antigen (BCMA)-targeted immunotherapy, including chimeric antigen receptor T-cell therapy (CAR-T) and bispecific antibodies (BsAbs), is emerging as another important class of treatment. Two BCMA-targeting CAR-T products, idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel, are approved in Japan, but only ide-cel is available for clinical use. Recently, a randomized phase III study comparing ide-cel with standard therapy in patients with refractory myeloma who had received 2 to 4 prior lines of therapy showed that ide-cel was superior in terms of both response rate and PFS. Based on these results, ide-cel was approved as a third-line therapy. The new availability of bispecific antibodies has also raised new clinical questions regarding how to use CAR-T and BsAbs for each patient, and in what order. Limited data have suggested that favorable responses can be achieved when BsAbs are administered after CAR-T, but responses are suboptimal when CAR-T is administered after BsAbs. Finally, it is important to note that coordination between referring centers and treating centers, including aspects such as timing of patient referral, bridging therapy, and long-term follow-up after CAR-T, is critical to optimization of CAR-T.</p>\",\"PeriodicalId\":93844,\"journal\":{\"name\":\"[Rinsho ketsueki] The Japanese journal of clinical hematology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Rinsho ketsueki] The Japanese journal of clinical hematology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11406/rinketsu.65.1042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Rinsho ketsueki] The Japanese journal of clinical hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11406/rinketsu.65.1042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Role of CAR-T in multiple myeloma and coordination between referring and treating centers].
Immunomodulatory drugs (IMiDs), proteasome inhibitors (PIs), and anti-CD38 antibodies have been the three mainstays of myeloma treatment. B-cell maturation antigen (BCMA)-targeted immunotherapy, including chimeric antigen receptor T-cell therapy (CAR-T) and bispecific antibodies (BsAbs), is emerging as another important class of treatment. Two BCMA-targeting CAR-T products, idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel, are approved in Japan, but only ide-cel is available for clinical use. Recently, a randomized phase III study comparing ide-cel with standard therapy in patients with refractory myeloma who had received 2 to 4 prior lines of therapy showed that ide-cel was superior in terms of both response rate and PFS. Based on these results, ide-cel was approved as a third-line therapy. The new availability of bispecific antibodies has also raised new clinical questions regarding how to use CAR-T and BsAbs for each patient, and in what order. Limited data have suggested that favorable responses can be achieved when BsAbs are administered after CAR-T, but responses are suboptimal when CAR-T is administered after BsAbs. Finally, it is important to note that coordination between referring centers and treating centers, including aspects such as timing of patient referral, bridging therapy, and long-term follow-up after CAR-T, is critical to optimization of CAR-T.