LncRNA LINC01664通过促进同源重组介导的DNA修复来提高抗癌能力。

IF 3 3区 生物学 Q2 GENETICS & HEREDITY DNA Repair Pub Date : 2024-09-24 DOI:10.1016/j.dnarep.2024.103770
Jie Du , Fuqiang Chen , Zihan Chen , Wenna Zhao , Jianyu Wang , Meijuan Zhou
{"title":"LncRNA LINC01664通过促进同源重组介导的DNA修复来提高抗癌能力。","authors":"Jie Du ,&nbsp;Fuqiang Chen ,&nbsp;Zihan Chen ,&nbsp;Wenna Zhao ,&nbsp;Jianyu Wang ,&nbsp;Meijuan Zhou","doi":"10.1016/j.dnarep.2024.103770","DOIUrl":null,"url":null,"abstract":"<div><div>The intracellular responses to DNA double-strand breaks (DSB) repair are crucial for genomic stability and play an essential role in cancer resistance. In addition to canonical DSB repair proteins, long non-coding RNAs (lncRNAs) have been found to be involved in this sophisticated network. In the present study, we performed a loss-of-function screen for a customized siRNA Premix Library to identify lncRNAs that participate in homologous recombination (HR) process. Among the candidates, we identified LINC01664 as a novel lncRNA required for HR repair. Furthermore, LINC01664 knockdown significantly increased the sensitivity of cancer cells to DNA damage agents such as ionizing radiation and genotoxic drugs. Mechanistically, LINC01664 interacted with Sirt1 promoter and then activated Sirt1 transcription, which contributed to HR-mediated DNA damage repair. In summary, our findings revealed a new mechanism of LINC01664 in DNA damage repair, providing evidence for a potential therapeutic strategy for eliminating the treatment bottlenecks caused by cancer resistance to chemotherapy and radiotherapy.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"143 ","pages":"Article 103770"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LncRNA LINC01664 promotes cancer resistance through facilitating homologous recombination-mediated DNA repair\",\"authors\":\"Jie Du ,&nbsp;Fuqiang Chen ,&nbsp;Zihan Chen ,&nbsp;Wenna Zhao ,&nbsp;Jianyu Wang ,&nbsp;Meijuan Zhou\",\"doi\":\"10.1016/j.dnarep.2024.103770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The intracellular responses to DNA double-strand breaks (DSB) repair are crucial for genomic stability and play an essential role in cancer resistance. In addition to canonical DSB repair proteins, long non-coding RNAs (lncRNAs) have been found to be involved in this sophisticated network. In the present study, we performed a loss-of-function screen for a customized siRNA Premix Library to identify lncRNAs that participate in homologous recombination (HR) process. Among the candidates, we identified LINC01664 as a novel lncRNA required for HR repair. Furthermore, LINC01664 knockdown significantly increased the sensitivity of cancer cells to DNA damage agents such as ionizing radiation and genotoxic drugs. Mechanistically, LINC01664 interacted with Sirt1 promoter and then activated Sirt1 transcription, which contributed to HR-mediated DNA damage repair. In summary, our findings revealed a new mechanism of LINC01664 in DNA damage repair, providing evidence for a potential therapeutic strategy for eliminating the treatment bottlenecks caused by cancer resistance to chemotherapy and radiotherapy.</div></div>\",\"PeriodicalId\":300,\"journal\":{\"name\":\"DNA Repair\",\"volume\":\"143 \",\"pages\":\"Article 103770\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Repair\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568786424001460\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786424001460","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

细胞内对 DNA 双链断裂(DSB)修复的反应对基因组稳定性至关重要,并在抗癌过程中发挥着重要作用。除了典型的 DSB 修复蛋白外,人们还发现长非编码 RNA(lncRNA)也参与了这一复杂的网络。在本研究中,我们对定制的 siRNA 预混文库进行了功能缺失筛选,以鉴定参与同源重组(HR)过程的 lncRNA。在候选者中,我们发现 LINC01664 是 HR 修复所需的新型 lncRNA。此外,LINC01664敲除会显著增加癌细胞对DNA损伤剂(如电离辐射和基因毒性药物)的敏感性。从机理上讲,LINC01664与Sirt1启动子相互作用,然后激活Sirt1转录,这有助于HR介导的DNA损伤修复。总之,我们的研究结果揭示了LINC01664在DNA损伤修复中的新机制,为消除癌症对化疗和放疗的耐药性所造成的治疗瓶颈提供了潜在的治疗策略证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LncRNA LINC01664 promotes cancer resistance through facilitating homologous recombination-mediated DNA repair
The intracellular responses to DNA double-strand breaks (DSB) repair are crucial for genomic stability and play an essential role in cancer resistance. In addition to canonical DSB repair proteins, long non-coding RNAs (lncRNAs) have been found to be involved in this sophisticated network. In the present study, we performed a loss-of-function screen for a customized siRNA Premix Library to identify lncRNAs that participate in homologous recombination (HR) process. Among the candidates, we identified LINC01664 as a novel lncRNA required for HR repair. Furthermore, LINC01664 knockdown significantly increased the sensitivity of cancer cells to DNA damage agents such as ionizing radiation and genotoxic drugs. Mechanistically, LINC01664 interacted with Sirt1 promoter and then activated Sirt1 transcription, which contributed to HR-mediated DNA damage repair. In summary, our findings revealed a new mechanism of LINC01664 in DNA damage repair, providing evidence for a potential therapeutic strategy for eliminating the treatment bottlenecks caused by cancer resistance to chemotherapy and radiotherapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DNA Repair
DNA Repair 生物-毒理学
CiteScore
7.60
自引率
5.30%
发文量
91
审稿时长
59 days
期刊介绍: DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease. DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.
期刊最新文献
Pathological modulation of genome maintenance by cancer/testes antigens (CTAs) Editorial Cutting edge perspectives in genome maintenance XI Contents of Previous 3 Special Issues in this Series of Perspectives Single-molecule toxicogenomics: Optical genome mapping of DNA-damage in nanochannel arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1