Luqing Zhao, Dan Dou, Di Zhang, Xin Deng, Ning Ding, Yun Ma, Xingyu Ji, Shengsheng Zhang and Chao Li
{"title":"ROS/pH 双响应槲皮素负载硼酸鸟苷超分子水凝胶灌肠剂在葡聚糖硫酸钠诱导的小鼠结肠炎中的应用","authors":"Luqing Zhao, Dan Dou, Di Zhang, Xin Deng, Ning Ding, Yun Ma, Xingyu Ji, Shengsheng Zhang and Chao Li","doi":"10.1039/D4TB01659A","DOIUrl":null,"url":null,"abstract":"<p >Ulcerative colitis (UC) is an inflammatory bowel disease that predominantly impacts the colon, typically starting in the rectum. A significant characteristic of UC is its propensity to affect the distal colon, which is particularly beneficial for targeted treatments such as enemas. This localized approach ensures that the medication is delivered directly to the affected areas, resulting in minimal systemic absorption. In this research, we have formulated a novel stimuli-responsive quercetin-loaded guanosine borate supramolecular hydrogel (named GBQ hydrogel), designed to prolong the residence time of the drug and protect the ulcerated intestinal tissues. The GBQ hydrogel has exhibited excellent injectability, self-healing capabilities, and biocompatibility, rendering it an ideal candidate for enema administration. <em>In vitro</em> studies have highlighted its ROS/pH dual-responsive release profile, which mimics the microenvironment of intestinal inflammation. Furthermore, we assessed the efficacy of the GBQ hydrogel on dextran sulfate sodium (DSS)-induced colitis, a common animal model for UC. Our findings indicate that the GBQ hydrogel significantly reduces disease activity, mitigates oxidative stress, restores the intestinal mucosal barrier, and prevents colonic cell apoptosis. Collectively, this study underscores the therapeutic potential of the GBQ hydrogel in managing inflammatory bowel conditions and paves the way for a novel hydrogel enema-based treatment strategy for UC.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 42","pages":" 10861-10876"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ROS/pH dual-responsive quercetin-loaded guanosine borate supramolecular hydrogel enema in dextran sulfate sodium-induced colitis in mice\",\"authors\":\"Luqing Zhao, Dan Dou, Di Zhang, Xin Deng, Ning Ding, Yun Ma, Xingyu Ji, Shengsheng Zhang and Chao Li\",\"doi\":\"10.1039/D4TB01659A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ulcerative colitis (UC) is an inflammatory bowel disease that predominantly impacts the colon, typically starting in the rectum. A significant characteristic of UC is its propensity to affect the distal colon, which is particularly beneficial for targeted treatments such as enemas. This localized approach ensures that the medication is delivered directly to the affected areas, resulting in minimal systemic absorption. In this research, we have formulated a novel stimuli-responsive quercetin-loaded guanosine borate supramolecular hydrogel (named GBQ hydrogel), designed to prolong the residence time of the drug and protect the ulcerated intestinal tissues. The GBQ hydrogel has exhibited excellent injectability, self-healing capabilities, and biocompatibility, rendering it an ideal candidate for enema administration. <em>In vitro</em> studies have highlighted its ROS/pH dual-responsive release profile, which mimics the microenvironment of intestinal inflammation. Furthermore, we assessed the efficacy of the GBQ hydrogel on dextran sulfate sodium (DSS)-induced colitis, a common animal model for UC. Our findings indicate that the GBQ hydrogel significantly reduces disease activity, mitigates oxidative stress, restores the intestinal mucosal barrier, and prevents colonic cell apoptosis. Collectively, this study underscores the therapeutic potential of the GBQ hydrogel in managing inflammatory bowel conditions and paves the way for a novel hydrogel enema-based treatment strategy for UC.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 42\",\"pages\":\" 10861-10876\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01659a\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01659a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
ROS/pH dual-responsive quercetin-loaded guanosine borate supramolecular hydrogel enema in dextran sulfate sodium-induced colitis in mice
Ulcerative colitis (UC) is an inflammatory bowel disease that predominantly impacts the colon, typically starting in the rectum. A significant characteristic of UC is its propensity to affect the distal colon, which is particularly beneficial for targeted treatments such as enemas. This localized approach ensures that the medication is delivered directly to the affected areas, resulting in minimal systemic absorption. In this research, we have formulated a novel stimuli-responsive quercetin-loaded guanosine borate supramolecular hydrogel (named GBQ hydrogel), designed to prolong the residence time of the drug and protect the ulcerated intestinal tissues. The GBQ hydrogel has exhibited excellent injectability, self-healing capabilities, and biocompatibility, rendering it an ideal candidate for enema administration. In vitro studies have highlighted its ROS/pH dual-responsive release profile, which mimics the microenvironment of intestinal inflammation. Furthermore, we assessed the efficacy of the GBQ hydrogel on dextran sulfate sodium (DSS)-induced colitis, a common animal model for UC. Our findings indicate that the GBQ hydrogel significantly reduces disease activity, mitigates oxidative stress, restores the intestinal mucosal barrier, and prevents colonic cell apoptosis. Collectively, this study underscores the therapeutic potential of the GBQ hydrogel in managing inflammatory bowel conditions and paves the way for a novel hydrogel enema-based treatment strategy for UC.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices