John Bamberg, Michael Giudici, Jesse Lansdown, Gordon F. Royle
{"title":"有限极空间中的战术分解与非展开经典群作用","authors":"John Bamberg, Michael Giudici, Jesse Lansdown, Gordon F. Royle","doi":"10.1007/s10623-024-01490-y","DOIUrl":null,"url":null,"abstract":"<p>For finite classical groups acting naturally on the set of points of their ambient polar spaces, the symmetry properties of <i>synchronising</i> and <i>separating</i> are equivalent to natural and well-studied problems on the existence of certain configurations in finite geometry. The more general class of <i>spreading</i> permutation groups is harder to describe, and it is the purpose of this paper to explore this property for finite classical groups. In particular, we show that for most finite classical groups, their natural action on the points of its polar space is non-spreading. We develop and use a result on tactical decompositions (an <i>AB-Lemma</i>) that provides a useful technique for finding witnesses for non-spreading permutation groups. We also consider some of the other primitive actions of the classical groups.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"46 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tactical decompositions in finite polar spaces and non-spreading classical group actions\",\"authors\":\"John Bamberg, Michael Giudici, Jesse Lansdown, Gordon F. Royle\",\"doi\":\"10.1007/s10623-024-01490-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For finite classical groups acting naturally on the set of points of their ambient polar spaces, the symmetry properties of <i>synchronising</i> and <i>separating</i> are equivalent to natural and well-studied problems on the existence of certain configurations in finite geometry. The more general class of <i>spreading</i> permutation groups is harder to describe, and it is the purpose of this paper to explore this property for finite classical groups. In particular, we show that for most finite classical groups, their natural action on the points of its polar space is non-spreading. We develop and use a result on tactical decompositions (an <i>AB-Lemma</i>) that provides a useful technique for finding witnesses for non-spreading permutation groups. We also consider some of the other primitive actions of the classical groups.</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01490-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01490-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Tactical decompositions in finite polar spaces and non-spreading classical group actions
For finite classical groups acting naturally on the set of points of their ambient polar spaces, the symmetry properties of synchronising and separating are equivalent to natural and well-studied problems on the existence of certain configurations in finite geometry. The more general class of spreading permutation groups is harder to describe, and it is the purpose of this paper to explore this property for finite classical groups. In particular, we show that for most finite classical groups, their natural action on the points of its polar space is non-spreading. We develop and use a result on tactical decompositions (an AB-Lemma) that provides a useful technique for finding witnesses for non-spreading permutation groups. We also consider some of the other primitive actions of the classical groups.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.