有限极空间中的战术分解与非展开经典群作用

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS Designs, Codes and Cryptography Pub Date : 2024-10-03 DOI:10.1007/s10623-024-01490-y
John Bamberg, Michael Giudici, Jesse Lansdown, Gordon F. Royle
{"title":"有限极空间中的战术分解与非展开经典群作用","authors":"John Bamberg, Michael Giudici, Jesse Lansdown, Gordon F. Royle","doi":"10.1007/s10623-024-01490-y","DOIUrl":null,"url":null,"abstract":"<p>For finite classical groups acting naturally on the set of points of their ambient polar spaces, the symmetry properties of <i>synchronising</i> and <i>separating</i> are equivalent to natural and well-studied problems on the existence of certain configurations in finite geometry. The more general class of <i>spreading</i> permutation groups is harder to describe, and it is the purpose of this paper to explore this property for finite classical groups. In particular, we show that for most finite classical groups, their natural action on the points of its polar space is non-spreading. We develop and use a result on tactical decompositions (an <i>AB-Lemma</i>) that provides a useful technique for finding witnesses for non-spreading permutation groups. We also consider some of the other primitive actions of the classical groups.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"46 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tactical decompositions in finite polar spaces and non-spreading classical group actions\",\"authors\":\"John Bamberg, Michael Giudici, Jesse Lansdown, Gordon F. Royle\",\"doi\":\"10.1007/s10623-024-01490-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For finite classical groups acting naturally on the set of points of their ambient polar spaces, the symmetry properties of <i>synchronising</i> and <i>separating</i> are equivalent to natural and well-studied problems on the existence of certain configurations in finite geometry. The more general class of <i>spreading</i> permutation groups is harder to describe, and it is the purpose of this paper to explore this property for finite classical groups. In particular, we show that for most finite classical groups, their natural action on the points of its polar space is non-spreading. We develop and use a result on tactical decompositions (an <i>AB-Lemma</i>) that provides a useful technique for finding witnesses for non-spreading permutation groups. We also consider some of the other primitive actions of the classical groups.</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01490-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01490-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对于自然作用于其周围极空间点集的有限经典群来说,同步和分离的对称性质等同于有限几何中某些构型存在性的自然问题和研究得很透彻的问题。更一般的展布置换群更难描述,本文的目的是探讨有限经典群的这一性质。我们特别指出,对于大多数有限经典群来说,它们在极空间点上的自然作用是非展开的。我们发展并使用了一个关于战术分解的结果(AB-Lemma),该结果为寻找非蔓延置换群的见证提供了有用的技术。我们还考虑了经典群的其他一些原始作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tactical decompositions in finite polar spaces and non-spreading classical group actions

For finite classical groups acting naturally on the set of points of their ambient polar spaces, the symmetry properties of synchronising and separating are equivalent to natural and well-studied problems on the existence of certain configurations in finite geometry. The more general class of spreading permutation groups is harder to describe, and it is the purpose of this paper to explore this property for finite classical groups. In particular, we show that for most finite classical groups, their natural action on the points of its polar space is non-spreading. We develop and use a result on tactical decompositions (an AB-Lemma) that provides a useful technique for finding witnesses for non-spreading permutation groups. We also consider some of the other primitive actions of the classical groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designs, Codes and Cryptography
Designs, Codes and Cryptography 工程技术-计算机:理论方法
CiteScore
2.80
自引率
12.50%
发文量
157
审稿时长
16.5 months
期刊介绍: Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines. The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome. The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas. Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.
期刊最新文献
Quantum rectangle attack and its application on Deoxys-BC Almost tight security in lattices with polynomial moduli—PRF, IBE, all-but-many LTF, and more Breaking the power-of-two barrier: noise estimation for BGV in NTT-friendly rings A new method of constructing $$(k+s)$$ -variable bent functions based on a family of s-plateaued functions on k variables Further investigation on differential properties of the generalized Ness–Helleseth function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1